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The purpose of this paper is to examine some of the issues faced by benchmark designers in 
situations where potentially very large and very small numbers need to be aggregated into a single 
number.We use, as an example, the case of TPC-D and examine the solution retained as 
described in the TPC-D Draft 6.0 [1]. The paper focuses on basic issues which are at the core of 
the metric selection problem and how choices on the basic issues naturally lead to choices on 
metric alternatives. To simplify the discussion, a mathematical appendix (Appendix A) has been 
provided thus freeing up the text from mathematics as much as possible. 
 
The Problem In a situation where test results for a single vendor can be distributed over a very 
wide range, how can one aggregate all the results into a single figure of merit so that (1) the 
underlying business model is represented in the metric and (2), meaningful vendor to vendor 
comparisons can be performed? Also, we assume that "small is good" i.e., a low metric equates 
to a good score. This is the case for the 19 TPC-D queries [1] which represent a large sample of 
realistic business questions in a decision-support environment. For a given system and a given 
database size, query execution times can vary over a wide range, e.g. some queries could take a 
few seconds while others could take several minutes or even hours. Small individual observations 
should, of course, equate to a good score. Averaging, in some fashion, the observations, i.e. 
finding a characteristic of central tendency, and taking the inverse will provide such a score. 
 
The simplest characteristic of central tendency is the simple mean which is equal to the sum of all 
observations (query times for TPC-D) divided by the number of observations. The main 
advantage of using the simple mean is its "physical" significance. For TPC-D its inverse is the 
average number of queries processed per unit of time. One of the well- known drawbacks of the 
arithmetic average is its sensitivity to large observations which are out of scope. For instance, if all 
observations are within the 1 to 10 range an abnormal observation of 1000 could dominate the 
arithmetic average so much that the resulting value could be meaningless. In this kind of a 
situation it is customary to resort to the geometric average. However, the geometric average is not 
a universal panacea as we see in the sequel. 
 
For a given set of n observations (e.g. TPC-D query times) xi 's, the simple mean x-  is given by  

x-  = 
x1 + x2 + ... + xn

n   
and the geometric average g is given by the formula g = 
n x1x2...xn  (the query power metric is computed as the inverse of g.)  The formula defining g 
looks simple but it is somewhat confusing when one tries to understand its physical meaning. By 
taking the logarithm and bearing in mind its elementary properties (i.e  and ), the formula for g can 
be rewritten as  

log g =  
log x1 + log x2 + ... + log xn

n   
Viewing the geometric average in this fashion provides a more intuitive approach to understanding 
a metric based on a geometric average. This is a result of the fact that adding is "easier" than 
multiplying, the very reason why logarithms were invented. With this formula we see that the 
geometric average can be viewed as an average also! Remember that the simple mean is very 
sensitive to large out of scope values. The same applies to the geometric average except that the 
sensitivity is to very small values of x resulting in very large (negative) values of logx. 
 



 

 

More Averages In summary, so far, we have the arithmetic average which is too sensitive to large 
values and the geometric average which is too sensitive to small values. This makes the 
geometric average sensitive to "benchmark specials". A vendor having found a tricky way to make 
one observation extremely small would reap enormous benefits. As we saw earlier, the problem 
with the geometric average comes from the "discontinuity" of the logarithm at the origin. So long 
as the observations are away from zero the geometric average is well-behaved. To try staying 
away from zero let us add a small quantity f to all the xi 's and to g which becomes say gf  defined 
by 

log (gf +f) =  
log (x1+f)+ log (x2+f)+ ... + log (xn+f)

n   
In this formula f is a fixed quantity independent of the observations. Although this formula looks 
identical to the "correction formula" portrayed in paragraph 5.4.1.2 of the TPC-D Draft 6.0 [1], it is 
different in the sense that, in the Draft, the quantity f is not fixed but a function of the observations. 
Since there are major drawbacks in using a value of f which is not fixed (see Appendix B) we 
confine ourselves to fixed values of f for the purpose of this analysis. 
 
We have "coined" the term f-displaced geometric average for the quantity  defined in the above 
formula. The purpose of the displacement is to guard against benchmark specials. But then, what 
to chose for f? We have retained two candidates, f=1/1000 and f=1. The first choice is reminiscent 
of the max/min ratio in the "correction formula" and there is a good reason for the second choice 
explained in Appendix A. Then, there is the half-way average called this way because it is a 
compromise, half-way between the simple mean and geometric average (again see Appendix A). 
The half-way average s is defined by the equation: 

s  = 
x1 + x2 + ... + xn

n   
Dimensions of Value The question we can ask ourselves next is: What are the properties which 
make a metric "good"? Next, we have defined five dimensions of value so that we can assess the 
above defined averages or any other metric, in terms of these dimensions of value. These are: (1) 
Ease To Explain referring to the amount of difficulty one encounters when explaining the metric to 
non-mathematically oriented users - it is related to how intuitive the measure is (everybody 
understands the simple mean). (2) Meaning refers to the ability to translate the measure into 
something usable directly while doing data base processing (e.g. a transaction rate). (3) Non-
hypersensitivity To Extreme Values which refers to the propensity of a metric to be overwhelmed 
by certain values out of range. (4) Scalability which refers to the property of a metric to be scaled 
by the same amount as the individual observations (e.g. if all values are divided by 2 then the 
metric is divided by 2). (5) Balance which refers to the property of a metric to favor a relative 
decrease in a large value over the same relative decrease in a small value.  
 Ease To Explain and Meaning These two dimensions are very closely related. Of all the 
measures considered only the simple mean has meaning since it easily translates into a number 
of data base transactions a user could expect to perform in a unit of time. Of course the actual 
client workload may not be represented adequately but this is a general problem and customers 
can exercise responsibility and make sure they understand their workload and how it would affect 
their throughput. It will be difficult to explain any metric other than the simple mean. In the case of 
TPC-D, although all averages examined have the dimension of a query time they don't have 
meaning because they cannot be translated into a number of transactions one can perform. They 
can, however, be effective for summary and comparison purposes. 
 Hypersensitivity to Extreme Values The half-way average is not as sensitive as the 
simple mean to large values. For example, taking {1,2,...10} and bringing 1 to 1000, the simple 
mean is multiplied by 20 but the half-way average is multiplied by 6 while the geometric average is 
multiplied by 2 only. For small values the geometric and the displaced geometric averages behave 
similarly. 
  Scalability This property is important. All averages examined so far, except the f-
displaced geometric average, scale with the observations; i.e. if all observations are multiplied (or 
divided) by a factor K then the average is also multiplied (or divided) by the same factor K. Non 
scalability is the major drawback of the 1-displaced geometric average which looks so good 



 

 

otherwise, especially considering the fact that if all observations are small then the 1-displaced 
geometric average is close to the simple mean. 
 Balance What we have called here a balanced measure is one which rewards "working" 
on large observations. Of all measures considered only the unbalanced measure is the geometric 
mean. In other words, with the geometric mean it does not pay to "work" on the system to bring 
the larger observations down because a relative drop of say 10% in a large observation will 
equate in the same drop for the geometric average as would a drop of 10% in a larger 
observation. This was what the TPC-D subcommittee wanted to accomplish and that is why the 
TPC-D metric is based on a geometric aver- age. Table 1 and the graph under it show a 
comparison between the simple mean, the new measures and the geometric average in order to 
illustrate some of the points just mentioned. 
 
TABLE 1. Comparison Between Arithmetic Average, Geometric Average, f- Displaced Geometric 
Average and Half-Average For Five Sets of Hypothetical Data 
 set 1  set 2  set 3  set 4  set 5 
x1    1  1  1  1  1  
x2  1  1  1  1  1 
x3  1  1  1  1  1 
x4   2  2  2  2  2 
x5   2  2  2  2  2 
x6   2  2  2  2  2 
x7   3  3  3  3  0.003 
x8  3  3  3  0.003  0.003 
x9  3  3  0.003  0.003  0.003 
x10  3  0.003  0.003  0.003  0.003 
mean  2.1  1.8003  1.5006  1.2009  0.9012 
g1   1.9804  1.5953  1.2600  0.96807  0.7138 
g  1.9105  0.9575  0.4799  0.2405  0.1205 
g1/1000   1.9107  0.9850  0.5076  0.2613  0.1343 
s  2.0081  1.5609  1.1699  0.8352  0.5568 
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In set 1 all observations are of the same order of magnitude and the values of the five statistics 
are very similar. In set 2 an observation has been brought down artificially through the use of a 
"benchmark special". The net effect on the geometric average is a division by 2 (corresponding to 
a doubling of the power which is the inverse) while the 1-displaced average or the half-way 
average behave similarly to the simple mean and decrease moderately. The 1/1000-displaced 
geometric average behaves also identically to the geometric average. As the number of 



 

 

observations which are brought down increases, the high sensitivity of the geometric average is 
exemplified resulting in doubling the power every time while the increase using the 1-displaced 
geometric average or the half-way average is moderate, reflecting more of an "additive" effect. 
 
Where do we go from here?  Table 2 portrays the summary of the analysis which took place 
above. Based on the desired effect, what is important and how this translates into the above 
dimensions of value, a choice can be made. The usefulness of what is dis- cussed here is the 
focus on the real issues (the dimensions of value). In the case of TPC- D, for example, a major 
consideration was the unbalance (N in the balance column). The resulting choice was the 
geometric average and the advantages and drawbacks which come with it. But, instead of 
debating choices on metric types, people can debate the real issues and the relative importance 
of these issues. Table 2 can then assist in selecting a metric once the real issues and the choices 
on these issues are clear. My per- sonal choice in a decision support environment is the half-way 
average. On one hand I am afraid of benchmark specials because they have a tendency to cast a 
doubt on the entire benchmark process so I am afraid of the geometric average in spite of the 
very good arguments for it. On the other hand, I like the arithmetic average because it has 
meaning but it is overwhelmed by large values. The half-way average is right in between, it is not 
sensitive to extreme values and it scales. Therefore it is the right choice. 
 
TABLE 2. Comparison Summary for Considered Measures 
Measure Ease to 

Explain  
Meaning Non-

Hypersensitivi
ty to Extreme 
Values 

Scalability Balance 

current [1]  N  N  N  N N 
simple mean  Y  Y N Y  Y 
XXX N  N Y N Y 
XXX  N  N N Y  N 
XXX  N N N  N  Y 
s  Y/N  N  Y  Y  Y 
 
 
 
APPENDIX A 
The phi-average.  Given a set of n observations x1 ,..., xn , and their associated weights or 
frequencies f1 , .. ,fn  one can define a gamut of averages. A very broad range of such averages 
fall under the general category of phi-averages defined as in [2]: given a monotonic function φ the 
phi-average Mφ  is given by the formula  

φ( Mφ ) = ∑
1

n
 fi φ(xi)  

The r-average (Also known as Power Average of Order r).   
The r-average mr  is a special case of  φ: x--> xr   and is given by  

mr  = (∑
i

 fi x
r
i   )1/r  

Important subcases are r = 1 (the arithmetic average often noted as x- ), r = -1 (the harmonic 
average), and  r = 0 which is a limit case yielding the geometric average (g), and r = 1/2 (the half-
way average s). We now proceed to show that h < x-  < g. First we show that x-  < g by noticing that  
x --> log x is concave and that, therefore 

log ∑
i

 fi xi   =  ∑
i

 fi logxi  



 

 

The above equation merely expresses log g = log x-  which implies g =  x-  . By rewriting the above 
equation with yi  =  we obtain yet another way of writing log g = log h where g and h are the 
geometric and harmonic averages of the 1 / xi 's. The relationship between the harmonic average 
and the geometric average can be further exploited to show that the r-average is an increasing 
function of r. Taking the derivative with respect to r in the equation defining mr  yields 

dmr
dr    =  

mr
r2

  ( -log ∑ fi xi + 
 ∑ fi logxi

∑ fi xi
 )  

where yi  = x ri  .  

Setting gi  = fi yi  / ∑ fi xi  we can further reduce the above equation  to 

 
dmr
dr    =  

mr
r2

  ( -log ∑ fi xi + ∑ gi logyi )  
Calling H the harmonic average of the 1 / yi  's with weights gi  the above equation can be 
rewritten as 

 
dmr
dr    =  

mr
r2

  ( log H  - ∑ gi log 1yi
 )  

which is positive since the second term inside the parentheses in the equation above is log G 
where G is the geometric average of the 1 / yi  's with weights gi . Therefore, the derivative of mr  
with respect to r is positive and therefore mr  is an increasing function of r.  
 
The geometric average as the 0-average. 
When  r --> 0 we can write  ar  = e rlog a   = 1 + rlog a + o(r) and thus:  

mr
r  = 1 + rlog m + o(r) = ∑

i

 fi (xi)
r  = ∑

i

 fi  + r ∑
i

 fi log xi  + o(r) 

which simplifies into  
r log mr  = r ∑

i

 fi log xi  + o(r) 

 finally yielding  
 log m0  =  ∑

i

 fi log xi  

which is the definition of the geometric average, the phi-average for φ: x --> logx. As a result,  the 
half-way average corresponding to r = 1/2  is half-way between the geometric average (r = 0) and 
the simple average (r = 1).  
 
The1-displaced average. 
Consider a phi-average closely related to the geometric average namely the a-displaced 
geometric average  defined by  

log (a + ga ) = ∑
i

 fi log (a + xi)  

where a is positive. Considering the 1-displaced geometric average from the point of view of its 
mathematical properties, we have already noticed that it falls into the category of phi-averages 
corresponding to the function x--> log (a + x); but, in this family of functions (a being the 
parameter), the 1-displaced geometric average (corresponding to a = 1) plays a role of anchor 
because it is the only one for which the value of the function is zero when the variable is equal to 
zero. This is why it was retained as a candidate. 
 



 

 

Relationship between arithmetic, geometric and f-displaced geometric averages 
The geometric average can be denoted as g0  for consistency. It could also be denoted as m0  
since it is also the 0-average, and for this reason, since we know that the r-average is an 
increasing function of r, we have g0  = x- . We are now showing that  ga  is between g0  and x- . 
First, notice that x --> log (a + x) is concave and that therefore  

log ∑
i

 fi (a + xi)   =  ∑
i

 fi log (a + xi)  

Hence,  log (a +  x- ) = log (a + ga ) and, since x --> log (a + x) is also monotonic increasing, then  

x-  = ga  and this establishes the first part of the inequality.  
To establish the second part of the inequality consider the a-displaced geometric average ga  
defined by  

log (a + ga ) = ∑
i

 fi log (a + xi)  

a + ga  can also be interpreted as G(y), the geometric average of the  yi 's defined by  yi  = a + xi  . 
Taking the derivative with respect to a in the equation defining  ga  yields  

1 + d
daga

a + ga
   = ∑

i

fi 
1

a + xi
  

which can be rewritten as 
1

G(y) 
d
da ga  = ∑

i

fi 
1
yi

   -  1
G(y)  

 

Notice that the equation  1
H(y)   = ∑

i

fi 
1
yi

    defines H(y) the harmonic average of the  1yi
  's and 

that  H(y) = G(y) (remember that the harmonic average is the (-1)-average while the geometric 
average plays the role of 0-average and that the r-average is an increasing function of r.) 
Therefore,  

1
G(y) 

d
da ga  =  1

H(y)   -  
1

G(y)   = 0 
 

And thus, d
da ga   = 0 insuring that  ga  is increasing and therefore g1  = g0 . This also establishes 

that Qp  in [1] with correction factor (1 / gf  ) is smaller than the value without correction factor (1 / 
g0  ).  
 
Variations 
A very important point is related to optimization. What should a vendor do in order to obtain a 
better score? In other words, are there any guidelines to improve the perfor- mance? The 
question here is "how do the various averages reward decreases in the individual contributors 
depending on their relative size?". From the definition of the r- average  

mr
r  = ∑

i

 fix
r
i   



 

 

we can determine the increase in the r-average as a function of the increase in one query time 
assuming all the others are equal. Differentiating the above equation one obtains the following 
equation 

?mr
?xi

  = fi 
xr-1
i

mr-1
r

  

This translates into  

dmr  =  fi 
xr-1
i

mr-1
r

  dxi  

which yields   

dmr
mr

  / 
dxi
xi

   =  
fix

r
i

∑ fix
r
i

  

which links the relative variation of an individual query time to the variation of the measure of 
central tendency. The term at the left side of the above equation is referred to as the "elasticity" in 

Economics. Whenever r > 0  we have x1  > x2  _ xr
1  > xr

2  and therefore, the elasticity of mr  with 
respect to xi  is an increasing function of xi  . In other words, the bigger xi  the bigger the relative 

decrease of  mr  for a given relative decrease d xi  / xi . This is true in particular for the half-way 
average corresponding to r = 1/2 (and for the simple mean which we knew already). It is not true 
for the geometric average which treats equally large and small observations.For the displaced 
geometric averages the argument is similar. Starting with the definition of the a-displaced 
geometric average 
log (a + ga ) = ∑

i

 fi  log (a + xi ) 

and taking the differential in both sides assuming that xi  only varies 
dga
ga

 
ga

a + ga
  = fi  

xi
a + xi

 
dxi
xi

  

Assuming that all the weights fi  are equal, noticing that  
ga

a + ga
   is constant, and that the function 

x--> x/ (a + x) is monotonic increasing, it is clear that the larger xi  the larger the relative increase 
of ga  for a given relative increase of xi . Therefore the a-displaced average is a balanced 
measure. 
 
APPPENDIX B 
As we saw, the formula for the f-displaced average is  

log (gf  + f) =  
log (x1 + f) + log (x2 + f) + ... + log (xn + f)

n   
The quantity gf  defined above is used in the definition of the power metric when the ratio between 
the max and the min query time is larger than 1000; f is defined as the maximum query time 
divided by 1000. As shown in appendix A, gf  is always larger than g (the geometric average) no 
matter what the value of is as long as it is positive. This property is used to penalize a vendor who 
would have a "benchmark special" resulting in one query time disproportionally small compared to 
the other query times.  
 



 

 

As a result, there are two formulas for the power metric in [1]. One is used when the max over min 
query time ratio is larger than 1000 and the other when the ratio is larger than 1000. Table 3 
shows sample data illustrating the difficulties associated with this "dual formula" situation resulting 
in a lack of "continuity". First, notice set 2 which illustrates the point that the simple mean is very 
sensitive to large out of scope values and set 3 which illustrates the point that the geometric 
average g is very sensitive to small values. Set 4 involves a marginal case where the max/min 
ratio is 1000 and thus, the geometric average is used (value 2.86). In set 3, the max/min ratio is 
larger than 1000 and  is used (value 2.88). 2.88 is very close to 2.86 but the problem is that set 3 
is "better" than set 4 and yet the power (inverse of the geometric average) decreases!  
 
TABLE 3. Variations of the Current Metric for Sample Data 
   set 1 set 2 set 3  set 4 set 5 
x1  1  1000  0.001  0.01  0.01 
x2  2  2  2  2  2 
x3  3  3  3  3  3 
x4  4 4 4  4  4  
x5  5  5 5 5  5 
x6  6  6 6  6 6 
x7  7  7  7  7  7 
x8  8 8  8  8 8 
x9  9 9 9  9  9 
x10  10  10  10  10   10.1 
mean  5.5  105.4  5.400  5.401  5.411 
g 4.528  9.036  2.270  2.857  2.860 
gf    2.880  3.060 
 
The situation is slightly different when comparing set 4 and set 5. In set 5 the max/min is higher 
than 1000 so gf  is used with f = 10.1/1000 = .0101 yielding the value 3.06 compared to set 4 
which yields 2.86 with the geometric average. Looking at set 5 in isolation one can see that using 
the "corrected" metric does penalize (3.06 vs. 2.86) but comparing set 5 and set 4 there is a big 
drop from set 5 to set 4 (about 7%) but set 4 and set 5 are almost the same. Actually, if we had 
used to geometric average, we would have concluded that set 4 and set 5 where about the same 
(2.86). Indeed, the only real difference between set 4 and set 5 is that the formula has changed! 
Based on the recommendation of this author the correction formula has been abandoned by the 
TPC-D subcommittee. 
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