TPC-DS

Decision Support Benchmark TPC-Public Relations 2008-05-23

Agenda

- Benchmark Objective
- General Assumptions
- Business Model
- Elements of TPC-DS
 - Schema
 - Dataset
 - Queries
 - Data Maintenance
 - Execution
- Positioning of TPC-DS to TPC-H

Benchmark Objectives

- Measures generally applicable aspects of a Decision Support System
 - Examine large volume of data
 - Give answers to real-world business questions
 - Execute queries of various operational requirements
 - Generate intense activity against the database server component of a system (IO, memory, CPU, Interconnect)
 - Remain closely synchronized with source OLTP database through a periodic database maintenance function

Overview

- Models the decision support functions of a retail product supplier
- Data contains vital business information such as customer, order and product data
- Models decision support queries and data maintenance

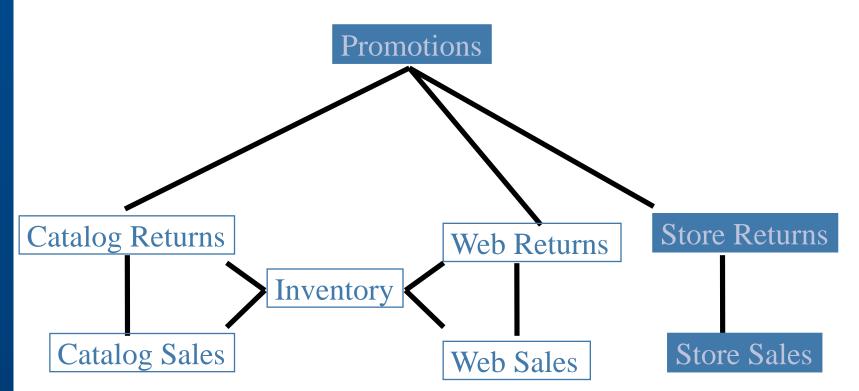
General Requirements

- 6 years of data
- data is skewed
- fine fact table granularity (lineitem)
- DBMS must demonstrate ACID
 properties
- update against all tables

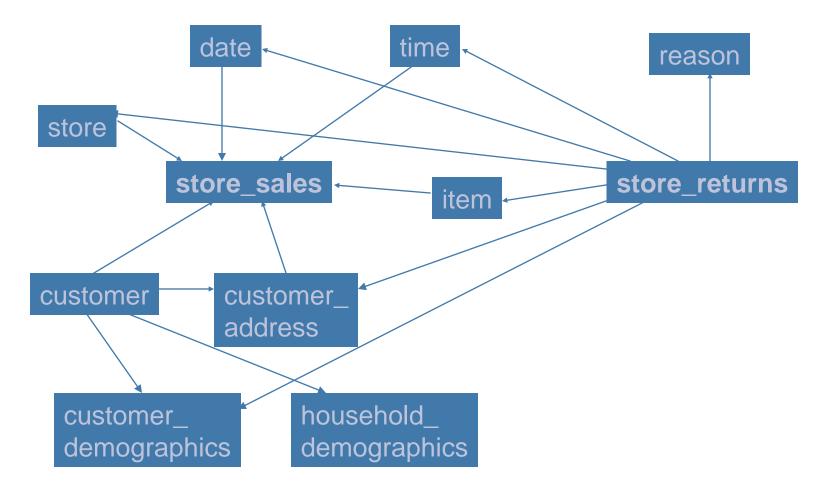
Schema

- Reflects the business model
- Structure is representative of today's data warehouse systems
- Stresses optimizer due to size and structure

DS TPC -


Schema

- Snow-storm schema
 - TPC-DS consists of multiple snowflake schemas, which are multiple star schema with dimensions linking to dimensions
- Logical schema
 - The actual implementation is flexible as long as views in accordance with the specification are provided
- Large number of tables (26)
 - Large number of columns per table (38)
 - Multiple fact tables to enable joins between large tables (fact to fact joins)



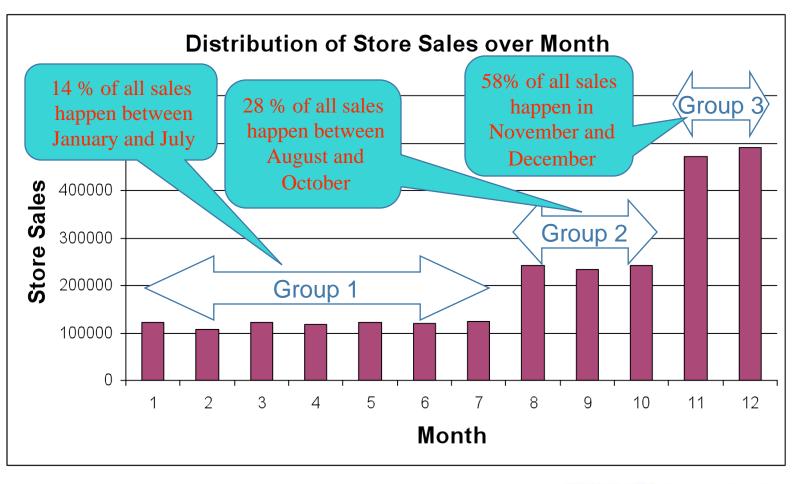
TPC - DS

TPC Transaction Processing Performance Council

Schema: Store Channel

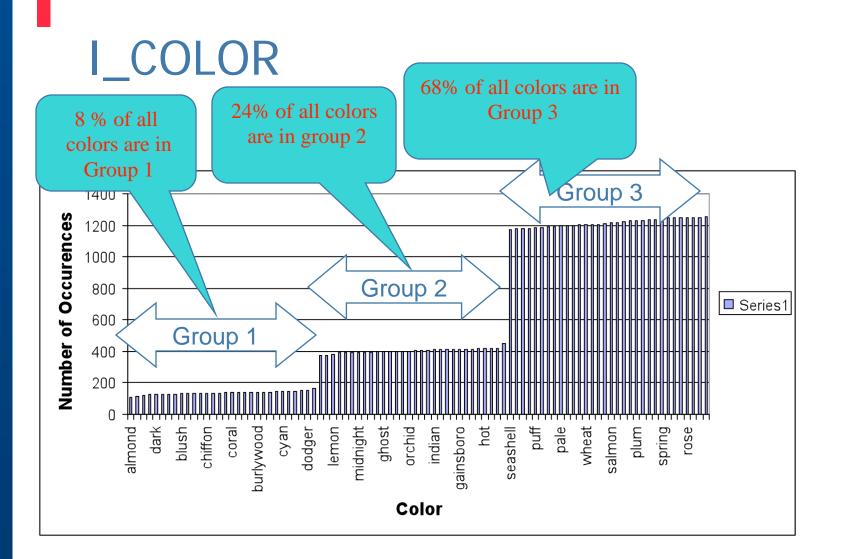
Data Set

- Most data has "real world" content:
 - Names, address, etc.
- Data is skewed:
 - E.g. SS_SOLD_DATE:
 - Low sales: January July
 - Medium sales: August October
 - High sales: November/December
 - E.g. I_COLOR:
 - Three groups of low, medium and high likely colors



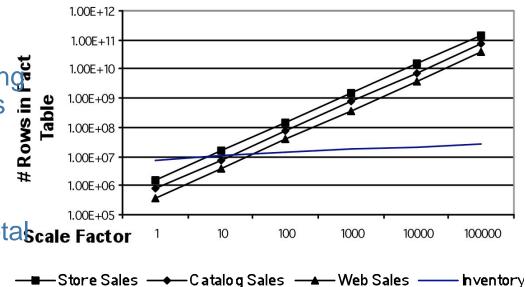
Realistic Data Generation

- Size is defined in scale-factors
- Scale factor indicates raw data size in GB
 - 100, 300, 1000, 3000, 10000, 30000, 100000
- Row counts for tables scale realistically
 - Fact tables grow linearly
 - Dimension tables grow sub-linearly



SS_SOLD_DATE Distribution

TPC Transaction Processing Performance Council



TPC Transaction Processing Performance Council

Database Scaling (fact tables)

- Scale Factor correspond to the nominal database size in GB
- I.e. Scale Factor 100 is approx. 100GB, not including indexes, materialized views us and temporary tables Indexes, materialized views #
- Indexes, materialized views to 1.00E+06 and temporary tables significantly increase the totascale Factor disk capacity (3x to 5x)



Fact Table Scaling

• fact table amount for the majority of the data (99%)

TPC Transaction Processing Performance Council

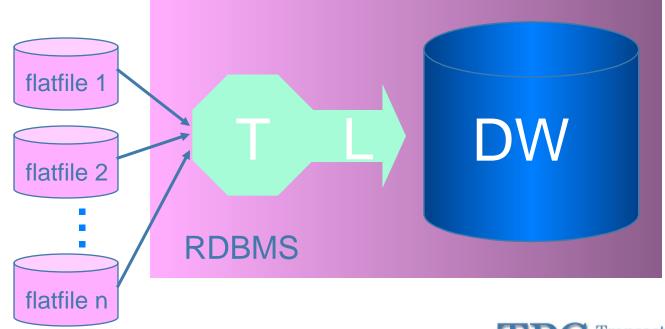
Database Scaling (Dimensions)

- scale sub-linearly
- amount for a fraction of the fact tables

TPC - DS

Query Model

- Query Language: SQL99 + OLAP extensions
- Variants are allowed, but need to be approved in advance
- Four Classes of queries
 - Reporting
 - Ad-doc (scenario) OLAP
 - Ad-hoc (individual) DSS
 - Data extraction
- 99 different queries per user



Data Maintenance Model

(Extraction) - Transformation - Load

Normalized Data

Cleansing Transformation Slowly Changing Dimensions **Snow Flake Schema**

Data Maintenance Model

- Server-centric refresh model (E)TL
- No measurement of an extraction process
- Transformations and loads from a normalized dataset (flat-files) into a star schema
- Transformations can be done in any SQL or procedural language
- Data Maintenance Model includes slowly changing dimensions
- Updates all non-static tables

Benchmark Execution

- 5 Phases (timed and un-timed)
- Sequence is:

TPC - DS

• Data Maintenance can run concurrently with Queries (Trickle)

System Setup

- This phase prepares the system for a performance measurement run (un-timed)
 - Flat-file creation
 - Hardware setup
 - Server, storage, network
 - DBMS setup no data load
 - Disk setup

TPC-DS creation

- This phase prepares the database for a performance run
 - Load raw data into base tables
 - Create auxiliary data structures
 - Analyze data

Query Run #1

This test measures the system's performance when executing queries in a multi-user fashion

. . .

Stream 1: $Q_{31}, Q_{21}, Q_1, Q_3, Q_8, \dots, Q_{47}, Q_{123}$ Stream 2: $Q_1, Q_{25}, Q_4, Q_4, Q_9, \dots, Q_{12}, Q_3$

Stream n (Query permutation for stream n)

TPC Transaction Processing Performance Council

DBMS

 $\mathbf{J}_{5\Lambda}$

Query Run #1

- Each stream runs all 99 queries
 - In different order
 - With different substitution parameters
- Only one query in each stream is executing at any given time

 \rightarrow n queries run concurrently

Data Maintenance Run (ETL)

- The data maintenance run represents the integration and consolidation of data from source systems and the removal of obsolete data from a data warehouse
- It performs the following tasks:
 - Maintaining dimensional data
 - Loading changed and new dimensional data
 - Transforming dimensional data
 - Updating/inserting of dimension data
 - Maintaining new fact data
 - Loading new fact data
 - Transforming fact data
 - Inserting fact data
 - Purging fact data

Data Maintenance Run

- Serves to assure that auxiliary data structures are properly maintained
- Reads data from flat files
- Must be implemented in the database (no external tools)

DS TPC -

Primary Metrics

1. Performance Metric: Queries per Hour

 $QphDS@SF = \frac{99*2*S*3600*SF}{(T_{TT1}+T_{TT2}+0.2*T_{Load})}$

– Where:

DS

TPC -

- SF=scale factor
- T_{TT1} = Elapsed time of the first throughput run
- T_{TT2} = Elapsed time of the second throughput run
- T_{Load} = Elapsed time of the load test
- 3. Price Performance: Price per QphDS

$$\label{eq:stable} \$/QphDS@SF = \frac{P}{QphDS@SF}$$

- P is the price of the Priced Configuration
- 5. System Availability Date

Comparison to TPC-H: Schema

Characteristic	TPC-H	TPC-DS
Business model	Retail	Retail
Normalization	3 rd normal	Star schema
Number of tables	8	26
Number of columns (largest table)	15	38

TPC - DS

Comparison to TPC-H: Data Set

Characteristic	TPC-H	TPC-DS
Data distribution	Uniform	Skewed
Data generation	Synthetic	Pseudo realistic
Row count scaling	Linear	Linear/sub-linear

Comparison to TPC-H: Queries

Characteristic	TPC-H	TPC-DS
SQL Dialect	SQL92	SQL99+OLAP
# of queries	22	150+
Query types	Ad-hoc*	Mix*
Substitution parameters	Yes	Yes
Query repeatability	Yes	Yes

TPC - DS

* Achieved by limiting database technology

** Reporting, Ad-Hoc, iterative OLAP and extraction

Comparison to TPC-H: Data Maintenance

Characteristic	TPC-H	TPC-DS
Number tables updated	2 out of 8	20 out of 26
Insert	Yes	Yes
Delete	Yes	Yes
Update	No	Yes
Random inserts/deletes?	Yes	No

Comparison to TPC-H: Execution

Characteristic	TPC-H	TPC-DS
Multi user test	Yes	Yes
Single user test	Yes	Not decided
Measurement	Queries/hour	Queries/hour

Comparison to TPC-H: Miscellaneous

Characteristic	TPC-H	TPC-DS
Restrictions on Auxiliary Structures	Yes	No
ACID	Yes	Yes

