TPC

TPC BENCHMARK E DS

Standard Specification

Version2.7.0

December2017

Transaction Processing Performance Council (TPC)
www.tpc.org
info@tpc.org
© 2017 Transaction Processing Performance Council

All Rights Reserved

B e n ¢ h m&tankided Spesification, Version72 Pagel of 137

Legal Notice

The TPCreserves all right, title, and interest to this document and associated source code as provided under U.S.

and international laws, including without limitation all patent and trademark rights therein.

Permission to copy without fee all or part of thissdment is granted provided that the TPC copyright notice, the

title of the publication, and its date appear, and notice is given that copying is by permission of the Transaction

Processing Performance Council. To copy otherwise requires specific permissi

No Warranty

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION CONTAINED
HEREIN I'S PROVI DED AAS | S0 AND WI TH ALL FAULTS,
OF THE WORK HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS, MPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A
PARTICULAR PURPOSE, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF
WORKMANLIKE EFFORT, OF LACK OF VIRUES, AND OF LACK OF NEGLIGENCE. ALSO, THERE
IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NaNFRINGEMENT WITH REGARD TO THE WORK.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE D ANY OTHER
PARTY FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE COST OF PROCURING
SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
CONTRACT, TORT WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY
OTHER AGREEMENT RELATING TO THE WORK, WHETHER OR NOT SUCH AUTHOR OR
DEVELOPER HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks

TPC Benchmark, TPOS ard QphDSare trademarkof the Transaction Processing Performance Council.

TPC Benc h m&tankdEd SpeSification, Version7d) Page2 of 137

AND

Acknowledgments

Developing a TPC benchmark for a new environment requires a huge effort to conceptualize research, specify,
review, prototype, and verify the benchmark. The TPC acknowledges the wotkraridutions of the TPDS
subcommittee member companies in developing the-DBGpecification.

The TPGDS subcommittee would like to acknowledge the contributions made by the many members during the
development of the benchmark specification. It hkerighe dedicated efforts of people across many companies,
often in addition to their regular duties. The list of significant contributors to this version includes Susanne
Englert, Mary Meredith, Sreenivas Gukal, Doug Johnson 1+2, Lubor Kollar, Murahi&j Bob Lane, Larry

Lutz, Juergen Mueller, Bob Murphy, Doug Nelson, Ernie Ostic, Raghunath Othayoth Nambiar, Meikel Poess,
Haider Rizvi, Bryan Smith, Eric Speed, Cadambi Sriram, Jack Stephens, John Susag, Tricia Thomas, Dave
Walrath, Shirley WangGuogen Zhang, Torsten Grabs, Charles Levine, Mike Nikolaiev, Alain Crolotte,

Francois Raab, Yeye He, Margaret McCarthy, Indira Patel, Daniel Pol, John Galloway, Jerry Lohr, Jerry
Buggert, Michael Brey, Nicholas Wakou, Vince Carbone, Wayne Smith, Davén&feiDave Rorke, Dileep

Kumar, Yanpei Chen, John Poelmand Seetha Lakshmi.

Document Revision History

Date Version Description

08-28-2015 2.0.0 Mail ballot version

11-12-2015 2.1.0 Includes FogBugz entries 937, 991, 1002, 1033 1053, 1060, 1121118531136

06-09-2016 2.2.0 Includes FogBugz entrigib71 1559 1539 1538 1537 1531 1502 1501 1480 1479 1474 1473
1472 1470 1393 1322 1263

08-05-2016 2.3.0 Includes FogBugz entries 1676, 1627, 1531, 1501 and 616

02-24-2017 2.4.0 Includes FogBugz entrie$728, 1697, 1696 artb54

06-08-2017 250 Includes FogBugz entrie$756, 1894, 1909, 1912, 1980 at@B1

09-26-2017 2.6.0 Includes FogBugz entries 1556, 2031, 2043, 1984, 2030, 2036, 2143, 2035, 20412037, 20
2040, 2045, 2046, 2047

12-07-2017 2.7.0 Includes FogBugz entriels759 2041,2149,2161, 2162, 2163, 2175, 2176,

A

TPC Benc h m&tankdEd SpeSification, Version7d) Page3 of 137

TPC Membership
(as ofJune2017)

Full Members
NIIr J DataCore o8
iBctan. cisco | N\ o) | URSERR FUJITSU
: . o — — —
Hewepacara HITACHI | M4 =3 inspur
Enterprise HUAWE!
(intel)’ W=1ale)" /oW B* Microsoft| NUTANDZ | ORACLE

Pivotal @ rednat FNY | TR Tramsme.

vmware

Associate Members

MIDEAs | CAICT | gF

INTERNATIONAL

TPC Bench m&tankldtd SpeSification, Versiori72 Page4 of 137

http://www.teradata.com/
http://www.ideasinternational.com/
http://www.dei.uc.pt/

Table of Contents

O T o o o Y /1= I 7
0.1 (L2 0100] TR Y 4
0.2 GENERAL IMPLEMENTATION GUIDELINEScivtueitteieeieeeeteeiemmtasesetneesanesssnsssnsssessssssssssnssssnssessnsesssnnssssssnsessnseenid
0.3 GENERAL MEASUREMENTGUIDELINES ...ttt ituitttetn ettt tetceemsasesastasssnessassn et aasssassasssnsssnsssnsesnstnnaessnsssnsesnsrsnres 8
0.4 VWORKLOAD |NDEPENDENGCE. ... ccuuitttittetttttetmaiestssstsstesassneantrnnsssatsneta st tantts aantatsnsetnsttetensstsersinenrsns 9
0.5 ASSOCIATEDMATERIALS ...etuiitiiteitette et st ees st e et e s st e st eaa s st s mm s sa s sa st aasean s sasssa s snmnsessa s ansesnsbassansssnsnnntnsstnsns 9

1 BUSINESS AND BENCHMARK IMODEL ...couuiiiiiiiiieiei et e e et ammae e st e e s e e et e e st s eeemnan s eseaneees 11
1.1 (7 =AY Y 11
1.2 LS UEST 1N =235 1Y,] o= T 12
1.3 DATA MODEL AND DATA ACCESSASSUMPTIONS. ... iituiitteitettetetnesiemmtsessaaeeseteerasessaniaeeessasertneesnnsessnsesrnnnnss 13
1.4 QUERY AND USERMODEL ASSUMPTIONS.uutuuuutaetaaaaatatetttmmaeatateaesstsssanasnaaaaesaaaaaaaaaaaaaaaaateeessssssnnnmmnsessssnnnnnsns 13
1.5 DATA MAINTENANCE ASSUMPTIONS. .. tttiitniittitettettieamtetsesasstesaestnsssternrs e sastaetntetnstsnesmaresnsttnrransernernns 15

2 LOGICAL DATABASE DES IGN ...cuiiiiiiiii et ceeee ettt et e e s s e e e e e et s e s b e s saa s senms it e s sbneesanessanssesann 17
2.1 SCHEMA OVERVIEW «.vuitutitniiteiie et et sesmt st sttt e st s st e st s sssaeasa s sa e sa s aa s aasesa st maessa e sn s snsensesnsstnssrmnassansstnsrnnss 17
2.2 COLUMN DEFINITIONS . ettt ttutttuettnettneetns st ieeestsessas st e stssaasst s nee st esestesasstests s annssansstsessnssasestesssnnntsessesnnns 17
2.3 Yo =TI = = TN T N TR 18
2.4 DIMENSION TABLE DEFINITIONS ..u.tuituititittittitet s eemeeeateaseateaeaeaeases e sastaeaseasessessrarastansssnssnssnsensensensensenns 24
2.5 IMPLEMENTATION REQUIREMENT S .. ttutitutitettneiteetnetameeteeseeteeanseteetaannteeaeeteeneanesnesnamanranssnsesnresnsesnsenns 31
2.6 DATA ACCESSTRANSPARENCYREQUIREMENTS. ...uituiituiiteiteiteetieeneteeteetesteeteetesnmaeestnsennesteeenneessesneesnnnaees 34

3 SCALING AND DATABASE POPULATION et eeemt et e e e erees s e e s st e s e e s saa e s s rmn e e sanaas 35
3.1 S 00 N LT, 0] o] = 35
3.2 TESTDATABASE SCALING ...uuittittiititetn ettt etascesmssessasssssesaestaetsn st aaaesastasansttassansesas aneestssssnsstnsssnsssnestnsrnnnnessns 35
3.3 QUALIFICATION DATABASE SCALINGuuuittttttiseettttiseaasessssstintaesestunseesests s sesestsseesestsnaetesnnnesssseeessnnnnaees 36
3.4 DSDGEN AND DATABASE POPULATION .. euttuititeteteset s eessseasenseaseseseses s arasasnssnsnsensenssnenssnanntassnssnsenssnsens 37
3.5 DNy 17NV 7N |- 110 38

4 QUERY OVERVIEW ..ttt eeee ittt e et e e s e e e e e e et et ee et s emnteeeeeseetasasesaeeaeaaanansaeeaaaeeeeennes 39
4.1 GENERAL REQUIREMENTS ANDDEFINITIONS FORQUERIEScuuuieetitiiieesettiieeaseeeeeataeeesestanseessanmmsssnaeesesnnnns 39
4.2 QUERY MODIFICATION METHODS. . .uuiiiiiiiiiieeteiiiseetisneesassnsesssssnsesssssnnsssassessesssnsessesssnsessessmnmsssnssessesssnseseessnns &0
4.3 SUBSTITUTION PARAMETER GENERATION. .11 ttuittiitteitneetn et ieeessaestaseansstaesanssssesrmeessnsssnsstessnssssestsrnnseersnssnsernsd 46

D DATA MAINTENANCE oo ettt ettt et em e et e et e et e e e e et s s e seemta e et s ta e e e s et san e saneanssanrans 47
51 IMPLEMENTATION REQUIREMENTS ANDDEFINITIONS . .. itttiitittittettettiemntessestessstesnessnesssieenssesnessnsrsneesnessneees 47
5.2 REFRE SHD AT A ittt ittt et ee et e et et e e et e et seamta e ea e et e e b s e e e s b e s s aneae s s e b e s b e sa e et esbnssbmnessaestesnnssnersnsd 47
53 DATA MAINTENANCE FUNCTIONS. ... et ittt ittt iemee e e et ea e ea e ea e ea e ea s semeea e ea e ea s ea s ta e rasasa s snmsnsrasensenernernernns 50

6 DATA ACCESSIBILITY P ROPERTIES ..ottt e e eee e et e et et et eeb s semmt e et sensaeanns 61
6.1 THE DATA ACCESSIBILITY PROPERTIES. . et iuitititiaiaisiemeeaeaeatas st ta s s —eea e rareateatrasrasrasaeesssnssnsensenss 61

7 PERFORMANCE METRICS AND EXECUTIO N RULESottt eemes s e e e e 62
7.1 DEFINITION OF TERMS. .. euiuitittitiaeaeseemteaseateaeaeaeatata s e eaeaeasraseasessrastastnnrasessraseassasrssressasinnseensensensed 62
7.2 (O] N [T =7y 0] N L0 I =5 63
7.3 QUERY VALIDATION 1.ttttuuettttuuneesesssussaaaseesestansaesesssssaeesessnmmsssseeeesssnseeesssnneaannnssessnneetestnnmeteesseer 65
7.4 (oL U T NV (0I03P 65
7.5 (O T =T 1 5 7 N 70

TPC Benc h m&tankdEd SpeSification, Version7d) Pageb of 137

7.6 LY=L 70
8 SUT AND DRIVER IMPLE MENTATION ottt ettt e e et s semaa s s et e e s e s s e e s e et s ansaemtaseanestasees 73
8.1 MODELS OF TESTED CONFIGURATIONSt ittitttettetttetat et eressaesstsssaessassaneean s et sasssnsssassnsesnsstnssennssssnsesnssrneres 73
8.2 SYSTEMUNDERTEST(SUT) DEFINITION ...cciiutttttteeiittieettesameesaaitteeeeeesasssseeeseammtesaansssneeaesaannnseeeesammeeesannnneeeas 73
8.3 (D] LY =1 3 = TN T 74
9.1 [(0= Y S I =, 76
0.2 ALLOWABLE SUBSTITUTION ... tttuiittt ittt eeetneessmmsasesetaesessessas et saaaeensas s sssesasneeassssssssssanssetnsrernssssnnssennntens 77
10 FULL DISCLOSURE ...ttt e et e s e e et e e e et eaa e e et e e aa st hseemta s e sa s st e e b s sa s ab e s eesnaanesansan 78
10.1 REPORTINGREQUIREMENTS. .. .uuiituutiitutiittnieetaieeetetaeeeatseseaaetaseees s essaaestaeeetasetanssnnntasssasssssnaereteersnsonrnsees 78
J10.2 FFORMAT GUIDELINES ...euituiittietaeitneten e mee et st b s saa s st s saa s st s amaa s s b s s e s st e s b s sa s et semmt s saa s st e sba st ssssssbnnnsanssnesnnns 78
10.3 FULL DISCLOSUREREPORTCONTENT S ... it uitttttttettetttttesiresessssesaesnsssesss nnesssssstesnsssstesnestnsienessresnesrneees 78
10.4 EXECUTIVE SUMMARY euiituiitntitittetteetetanetteetsstettsetestsenntssssstesntessieetiessinenrssetieeteesmeetieressianeessiesnees 83
10.5 AVAILABILITY OF THE FULL DISCLOSUREREPORT.uuittiittiitiittitttieimnaiettessttsstiestessntesnernntaessesstiesnessnieeneesninenns 85
10.6 REVISIONS TO THEFULL DISCLOSUREREPORTitiiitiitit ittt e ireste ettt et e st e e st s sbmes st e et e st estsestessssssnnnsesnnns 85
J0.7 DERIVED RESULT S otuiituiitiiteitt it et ieeett et a et e st s ea s et e s a—eeeasetsesassa s sssesa s mmasen s ansesnsstnesnstnssennsssensesnssrnrnen 86
10.8 SUPPORTINGFILES INDEX TABLE ...ucvuiituiitniitniitnietn s trmestnssan et estnseansstssaamtasan et ttatan st ssaaatsnssasetsranssnsernnns 87
O TS U = =T T = T T =TS 88
11 72 5 N 90
11,1 GENERAL RULES ...ttt ittt ettt ceemt et et e et et e et e et ieeatt e ea s et te e b e st s et e s ee s a e sa e sa e e aa s sasean s mnesbnsssnsesnssrnnns Q0
2 AN U [T o] o] O T =] 1 I S LSRR 90
11.3 CLAUSE 4 RELATED I TEMS . ouiiitiiitiiietit e ee et teemtae st e et e sttt e st e sa st eesss e saessa s aa e saessa s mna s saessasasn s snatnsssnssnnnssees 91
T11.4 CLAUSE D RELATED I TEMS . cuuiiuiiitiitieittiei et ieemta s it etae sttt s st e sa st —es st e st s sa s ta e sasss s mnn s sbssassssssnsssnssnsnnnssees 92
L11.5 CLAUSE B RELATED I TEMS . iuuiitiiitiiiiiittiett ettt iiemttesttestesstestesssssunsesssessssssssesssssssnnsessessstsstsessessnsesnsennnssees 92
11.6 CLAUSE 7 RELATED I TEMS . iuuiitiiitiiiteittiett et iaemttsttiestesstsstesassbaes st sest s ssstssesasss s snnssesteesttsstsessessssesnsennnssees 92
T11.7 CLAUSE B RELATED I TEMS . iuuittiiitiitiittiiet et ieemttstttettessts st esassiaaes st esassssttsesasss s snnsestesstsssssesnessssesseennnsees 92
11.8 CLAUSE O RELATED I TEMS . uiiitiiitiiti et ietee et eeemta et ete e et s e et e e aa st —essa s e st s sa s ta s e sa s esss mm s saessa s en e ensasnsssnssnnnssees 92
11.9 CLAUSE LORELATED ITEMS . ituituiitniiteii et et eeeeea et et et e et e et s s ee st s e ea s st s et s e saessa s mm s easeassnsesnsenernsernnnss 93

TPC Benc h m&tankdEd SpeSification, Version7d) Pageb of 137

0 PREAMBLE

0.1 Introduction

The TPC Benchmakk DS (TPCDS) is a decisin support benchmark that models several generally applicable
aspects of a decision support system, including queries and data maintenance. The benchmark provides a

representative evaluation of the Syst edecitiondupport T e
system.

This benchmark illustrates decision support systems that:

1 Examine large volumes of data;
1 Give answers to reaborld business questions;
1 Execute queries of various operational requirements and complexities (éhgg,adportingiterative
OLAP, data mining);
1 Are characterized by high CPU and 10 load;
9 Are periodically synchronized with source OLTP databases through database maintenance functions.
T Run o n a fi ®itgpns,Buch as RDBMS as wellldadoop/Sparlkased systems

A benchmark result measures queggponse time in single user mode, quargughputin multi user mode
and data maintenance performance for a given hardware, operating systelatagmebcessing system
configuration under a controlled, complex, muitierdecision support workload.

Comment: While separated from the main text for readability, comments and appendices are a part of the
standard and their provisions must be enforced.

0.2 General Implementation Guidelines

The purpose of TPC benchmarks is to provide relgabjective performance data to industry users. To
achieve that purpose, TPC benchmark specifications require benchmark tests be implemented with systems,
products, technologies and pricing that:

a) Are generally available to users;

b) Are relevant to the marksegment that the individual TPC benchmark models or represents (e. DI PC
models and represents complex, high data volume, decision support environments);

c) Would plausibly be implemented by a significant number of users in the market segment modeled or
represented by the benchmark.

In keeping with these requirements, the TPE database must be implemented using commercially available
data processingoftware, and its queries must be executed via SQL interface.

The use of new systems, products, techgiel® (hardware or software) and pricing is encouraged so long as
they meet the requirements above. Specifically prohibited are benchmark systems, products, technologies or
pricing (hereafter referred to as "implementations") whose primary purpose ishpenfaa optimization of TPC
benchmark results without any corresponding applicability teweald applications and environments. In

other words, all "benchmark special” implementations, which improve benchmark results but-nairictal
performance or pring, are prohibited.

TPC Benc h m&tankdEd SpeSification, Version7d) Page7 of 137

A number of characteristics shall be evaluated in order to judge whether a particular implementation is a
benchmark special. It is not required that each point below be met, but that the cumulative weight of the
evidence be consideré¢d identify an unacceptable implementation. Absolute certainty or certainty beyond a
reasonable doubt is not required to make a judgment on this complex issue. The question that must be answered
is: "Based on the available evidence, does the clear prejporethe greater share or weight) of evidence

indicate this implementation is a benchmark special?"

The following characteristics shall be used to judge whether a particular implementation is a benchmark special:

a) Is the implementation generally availapiidacumented, and supported?

b) Does the implementation have significant restrictions on its use or applicability that limits its use beyond
TPC benchmarks?

c) Is the implementation or part of the implementation poorly integrated into the larger product?

d) Does tle implementation take special advantage of the limited nature of TPC benchmarks (e.g., query
templates, query mix, concurrency and/or contention, etc.) in a manner that would not be generally
applicable to the environment the benchmark represents?

e) Is the e of the implementation discouraged by the vendor? (This includes failing to promote the
implementation in a manner similar to other products and technologies.)

f) Does the implementation require uncommon sophistication on the part of tisemgrogramnreor
system administrator?

g) Is the pricing unusual or nezustomary for the vendor or unusual or foustomary compared to normal
business practices? The following pricing practices are suspect:

Availability of a discount to a small subset of possible @ustrs;

Discounts documented in an unusual or-nastomary manner;

Discounts that exceed 25% on small quantities and 50% on large quantities;

Pricing featured as a clogit or onetime special;

Unusual or norcustomary restrictions on transferability sbguct, warranty or maintenance

on discounted items.

h) Is the implementation (including betalease components) being purchased or used for applications in the
market segment the benchmark represents? How many sites implemented it? How masgrebdnefi
from it? If the implementation is not currently being purchased or used, is there any evidence to indicate
that it will be purchased or used by a significant number ofused sites?

= =4 =4 =4 -4

0.3 General Measurement Guidelines

TPC benchmark results are expectedd@bcurate representations of system performance. Therefore, there are
specific guidelines that are expected to be followed when measuring those results. The approach or
methodology to be used in the measurements are either explicitly described in tteasipecor left to the
discretion of the test sponsor.

When not described in the specification, the methodologies and approaches used must meet the following
requirements:

a) The approach is an accepted engineering practice or standard;

b) The approach does nenhance the result;

c) Equipment used in measuring the results is calibrated according to established quality standards;

d) Fidelity and candor is maintained in reporting any anomalies in the results, even if not specified in the
benchmark requirements.

Comment: The ue of new methodologies and approaches is encouraged as long as they meet the
requirements outlined above.

TPC Benc h m&tankdEd SpeSification, Version7d) Page8 of 137

0.4

0.5

Workload Independence

TPGDS uses terminology and metrics which are similar to other benchmarks originated by the TPC and others.
Such similarity interminology does not in any way imply that TIS results are comparable to other

benchmarks. The only benchmark results comparable teO%@re other TPDS results compliant with the

same major revision of the benchmark specification and with the saecfactor.

While this benchmark offers a rich environment representative of many decision support systems, it does not
reflect the entire range of decision support requirements. In addition, the extent to which a customer can achieve
the results reporteldy a vendor is highly dependent on how closelyI’6 appr oxi mates the ¢
application. The relative performance of systems derived from this benchmark does not necessarily hold for
other workloads or environments. Extrapolations to any otheramaint are not recommended.

Benchmark results are highly dependent upon workload, specific application requirements, and systems design
and implementation. As a result of these and other factors, relative system performance will vary. Therefore,
TPCDS shaild not be used as a substitute for a specific customer application benchmarking when critical
capacity planning and/or product evaluation decisions are contemplated.

Benchmark sponsors are permitted to employ several possible system designs and ajlwead de
implementation freedom within the constraints detailed in this specification. A full disclosure report (FDR) of
the implementation details must be made available along with the reported results.

Associated Materials

In addition to this document, TRPDS relies on material which is only available electronically. While not
included in the printed version of the specification, this material is integral to the submission of a compliant
TPCDS benchmark resullable0-1 summarizes the electronic material related to the-DSGpecification

that is available for download from the TPC web site.

This material is maintained, versioned and revised independently of the specification itself. Rpfertdix
F to detemine which version(s) of the electronic content are compliant with this revision of the specification.

Table 0-1 Electronically Available Specification Material

Content File Name/Location Usage Additional
Information

Data generator dsdgen Used to generate the data sets for the Clause 3.4
benchmark

Query generator | dsggen Used to generate the query sets for the Clause4.1.2
benchmark

Query query_templates/ Used by dsqgen to generate executable Clause4.1.3

Templates query text

Query Template | query_variants/ Used by dsqgen to generate alternative Appendix C

Variants executable query text

Table definitions | tpcds.sql Sample implementation of the logical Appendix A

in ANSI SQL tpcds_source.sql schema for the data warehouse.

Data data_maintenance/ Sample implementation of the SQL Clause 5.3

TPC Benc h m&tankdEd SpeSification, Version7d) Paged of 137

Content File Name/Location Usage Additional
Information

Maintenance needed for the Data Maintenance phase

Functions in of the benchmark

ANSI SQL

Answer Sets answer_sets/ Used to verify the initial population of Clause 7.3
the data warehouse.

Reference Data | run dsdgen with 8 Set of files for each scale factor to

Set validate flag compare the correct data generation of
base data, refresh data anddsggen data

0.5.1 Therulesfor pricing are included in the current revision of the TPC Pricing Specification locateé 3 C

website http://www.tpc.org.

Comment: There is a notinding How To_Guidedoc guide electronically available. The purpose of this
guide is to describe the most common tasks necessary to implementSTBEhchmark. Thetget audience
is individuals who want to install, populate, run and analyze the database, queries and data maintenance
workloads for TPEDS.

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel0of 137

http://www.tpc.org/

1 Business and Benchmark Model

1.1 Overview

TPC Benchmar-RE cobtéins befidAr@ark components that can be used to asses a broad range of
system topologies and implementation methodologies in a technically rigorous and directly comparable,
vendorneutral manner. In order to ease the learnimge for users and benchmark sponsors who are new to
TPGDS, the benchmark has been mapped to a typical business environment. This clause outlines the business
modeling assumptions that were adopted during the development of the benchmark, and theanithgact
benchmark environment.

TPCDS models the decision support functions of a retail product supplier. The supporting schema contains
vital business information, such as customer, order, and product data. The benchmark models the two most
important canponents of any mature decision support system:

1 User queries, which convert operational facts into business intelligence.
1 Data maintenance, which synchronizes the process of management analysis with the operational external
data source on which it relies

The benchmark abstracts the diversity of operations found in an information analysis application, while

retaining essential performance characteristics. As it is necessary to execute a great number of queries and data
transformations to completely managygy business analysis environment, no benchmark can succeed in exactly
mimicking a particular environment and remain broadly applicable.

While TPGDS does not aspire to be a model of how to build an actual information analysis application, the
workload h@ been granted a realistic context. It imitates the activity of a-chdinnel retailer; thus tracking
store, web and catalog sales channels.

The goal of selecting a retail business model is to assist the reader in relating intuitively to the components o
the benchmark, without tracking that industry segment so tightly as to minimize the relevance of the
benchmark. The TPOS workload may be used to characterize any industry that must transform operational
and external data into business intelligence.

Although the emphasis is on information analysis, the benchmark recognizes the need to periodicallg refresh
data The data represents a reasonable image of a business operation as they progress over time.

Some TPC benchmarks model the operational aspéut business environment where transactions are

executed on a real time basis. Other benchmarks address the simpler, more static model of decision support. The
TPGDS benchmark, models the challenges of business intelligence systems where operaditakddtboth

to support the making of sound business decisions in near real time and to direahigmglanning and

exploration.

TPC Benc h m&tankdEd SpeSification, Version7d) Pagell of 137

Figure 1-1illustrates TPEDS benchmark components.

Operational Refresh Ad hoc and
Systems Process Reporting
Queries

Store

et
of ETL

Files

\—‘
i — S
o

Catalog Database

—

e

Inventory
-—

Promotions

Figurel-1: TPGDS benchmark components

1.2 Business Model

TPGDS models any industry that must manage, sell and distribute products (e.g., food, electronics, furniture,
music and toys etc.). It utilizes the business model of & laaigil company having multiple stores located
nationwide. Beyond its brick and mortar stores, the company also sells goods through catalogs and the Internet.
Along with tables to model the associated sales and returns, it includes a simple inveteonyasygsa

promotion system.

The following are examples of business processes of this retail company:

Record customer purchases (and track customer returns) from any sales channel
Modify prices according to promotions

Maintain warehouse inventory

Create dpamic web pages

Maintain customer profiles (Customer Relationship Management)

=A =4 =8 -8 -4

TPGDS does not benchmark the operational systems. It is assumed that the chaspsiesub were designed

at different times by diverse groups having dissimilar functionalireauents. It is also recognized that they

may be operating on significantly different hardware configurations, software configurations and data model
semantics. All three channel saipstems are autonomous and retain possibly redundant information rggardin
customers, addresses, etc. For more information in the benchmarking of operational system, please see the TPC
website fittp://www.tpc.org.

TPGDS6 modeling of the business environment falls ir

91 Data Model and Data Access Assumpti¢gee Clausé.3)
1 Query and User Model Assumptiofsee Clausé.4)

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel2 of 137

http://www.tpc.org/

1 Data Maintenance Assumptiqese Clausé.5)

1.3 Data Model and Data Access Assumptions

1.3.1 TPGDS models aystem thaallows potentially long running andulti-part queries where the DBA can
assume that theata processing systasquiescenfor queriesduring any particular period.

1.3.2 The TPGDS data tracks, possibly with some delay, the state of an operational database through data
maintenance functionsvhich include a number of modifications impacting some part of the decision support
system

1.3.3 The TPCGDS schema is a snowflake schema. It consists of multiple dimension and fact tables. Each dimension

has a single column surrogate key. The fact tablasaith dimensions using each dimension table's surrogate
key. The dimension tables can be classified into one of the following types:

{1 Static: The contents of the dimension are loaded once during database load and do not change over time.
The date dimesion is an example of a static dimension.

1 Historical: The history of the changes made to the dimension data is maintained by creating multiple rows
for a single business key value. Each row includes columns indicating the time period for which the row is
valid. The fact tables are linked to the dimension values that were active at the time the fact was recorded,
thus maintaining Ahistorical trutho. ltem i s an

1 Non-Historical: The history of the changes made to the dinmendata is not maintained. As dimension
rows are updated, the previous values are overwritten and this information is lost. All fact data is
associated with the most current value of the dimension. Customer is an example dfiiatNiocal

dimension.
1.34 To achieve the optimal compromise between performance and operational consistesysteth@dministrator
can set, once and for all, the locking levels and the concurrent scheduling rules for queries and data maintenance
functions.
1.35 The size of a DSS systei more precisely the size of the data captured in a DSS systeswy vary from

company to company and within the same company based on different time frames. Therefore;Dige TPC
benchmark will model several different sizes of the DSS (a.k.a. benclscaikg or scale factor).

1.4 Query and User Model Assumptions
The users and queries modeled by the benchmark exhibit the following characteristics:

a) They address complex business problems
b) They use a variety of access patterns, query phrasings, operatomssaed set constraints
c) They employ query parameters that change across query executions

In order to address the enormous range of query types and user behaviors encountered by a decision support
system, TPEDS utilizes a generalized query model. This madlelws the benchmark to capture important
aspects of the interactive, iterative nature ofina analytical processing (OLAP) queries, the loAgeming

complex queries of data mining and knowledge discovery, and the more planned behavior of welkEkmatvn r
queries.

1.4.1 Query Classes

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel3of 137

1411

14.1.2

1.4.1.3

1414

The size of the schema and its three sales channels allow for amalgamating the above query classes, especially
ad-hoc and reporting, into the same benchmark. Ahaxlquerying workload simulates an environment in

which usersonnected to the system send individual queries that are not known in advance. The system's
administrator (DBA) cannot optimize the system specifically for this set of queries. Consequently, execution
time for those queries can be very long. In casti queries in a reporting workload are very well known in

advance. As a result, the DBA can optimize the system specifically for these queries to execute them very

rapidly by using clever data placement methods (e.g. partitioning and clusteringixdizolyadata structures

(e.g. materialized views and indexes). Amalgamating both types of queries has been traditionally difficult in
benchmark environments since per the definition of a benchmark all queries, apart from bind variables, are

known in advace. TPGDS accomplishes this fusion by dividing the schema into reporting ahdagarts.

The catalog sales channel is dedicated for the reporting part, while the store and web channels are dedicated for
the adhoc part. The catalog sales channel erassen as the reporting part because its data accounts for 40% of
the entiredata set The reporting and abdoc parts of the schema differ in what kind of auxiliary data structures

can be created The idea behind this approach is that the queriessingete aehoc part constitute the dtwbc

query set while the queries accessing the reporting part are considered the reporting queries.

A sophisticated decision support system must support a diverse user population. While there are many ways to

categorie those diverse users and the queries that they generat® I R&s defined four broad classes of

queries that characterize most decision support queries:

1 Reporting queries

1 Ad hoc queries

9 Ilterative OLAP queries
9 Data mining queries

TPCDS providesa wide variety of queries in the benchmark to emulate these diverse query classes.

Reporting Queries

These queries capture the

Aireportingo

natur e

periodically to answer weknown, predefined questios about the financial and operational health of a
business. Although reporting queries tend to be static, minor changes are common. From one use of a given
reporting query to the next, a user might choose to shift focus by varying a date range, gelogatpinoor a

brand name.

Ad hoc Queries

of a C

These queries capture the dynamic nature of a DSS system in which impromptu queries are constructed to
answer immediate and specific business questions. The central difference metieequeries and reporting

queries is the limited degree of foreknowledge that is available ®ytem Admiistrator(SysAdmin)when

planning for arad hocquery.

Iterative OLAP Queries

OLAP queries allow for the exploration and analysis of business data to discover new amdyfukani

relationships and trends.

Wh i

e

t hi

s ¢l ass

of

quer.

by a scenaridased user session in which a sequence of queries is submitted. Such a sequence may include both

complex and simple quies.

Data Mining Queries

Data mining is the process of sifting through large amounts of data to produce data content relationships. It can

predict future trends and behaviors, allowing businesses to make proactive, knedvigdgealecisions. This

classof queries typically consists of joins and large aggregations that return large data result sets for possible

extraction.

TPC Bench m&tankldtd SpeSification, Versiori72

Pagel4 of 137

15

Data Maintenance Assumptions

A data warehouse is only as accurate and current as the operational data on which it is based. pcttadingl
migration of data from operational OLTP systems to analytical DSS systems is crucial. The migration tends to
vary widely from business to business and application to application. Previous benchmarks evaluated the data
analysis component of decisisapport systems while excluding a realistic data refresh processDBR(Ifers

a more balanced view.

Decision support database refresh processes usually involve three distinct and important steps:

1 Data Extraction: This phase consists of the accurateaotion of pertinent data from production OLTP
databases and other relevant data sources. In a production environment, the extraction step may include
numerous separate extract operations executed against multiple OLTP databases and auxiliary data sources
While selection and tuning of the associated systems and procedures is important to the success of the
production system, it is separate from the purchase and configuration of the decision support servers.
Accordingly, the data extract step of the ETbgess (E) is not modeled in the benchmark. The-DBC
data maintenance process starts from generated flat files that are assumed to be the output of this external
Extraction process.

1 Data Transformation: This is when the extracted data is cleansed aagbaged into a common format
suitable for assimilation by the decision support database.

91 Data Load: This is the actual insertion, modification and deletion of data within the decision support
database.

Taken together, the progression of Extraction, Tramnsétion and Load is more commonly known by its
acronym, ETL. In TPEDS, the modeling of Transformation and Load is known as Data Maintenance (DM) or
Data Refresh. In this specification the two terms are used interchangeably.

The DM process of TPOS includes the following tasks that result from such a complex business environment
as shown irFigure1-2:

i) Load the refresh data set, which consists of new, deleted and changed data destined for the data warehouse in
its operational format.

i) Load refresh data set into the data warehouse applying data transformations, e.g.:

1 Data denormalization (3rd Normal form to snowflake). During this step the source tables are mapped
into the data warehouse by:

A Direct source to targenapping. This type of mapping is the most common. It applies to tables in
the data warehouse that have an equivalent table in the operational schema.

A Multiple data warehouse source tables are joined and the result is mapped to one target table. This
mapping translates the third normal form of the operational schema into-tleerdalized form of
the data warehouse.

A One source table is mapped to multiple target tables. This mapping is the least common. It occurs
if, for efficiency reason, the schemftbe operational system is less normalized than the data
warehouse schema.

1 Syntactically cleanse data
1 De-normalize
iii) Insert new fact records and delete fact records by date.

The structure and relationships between the flat files is provided in form loleadescription and the ddl of the
tables that represent the hypothetical operational database in Appendix A.

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel5of 137

=T

Files

Source System Layer

Transformations

Staging Area (Optional)

l

Fact
Insertion/Deletion

Data Warehouse Layer

Fact
Table

Figure 1-2: Execution Overview of the Data Maintenance Process

TPC Bench m&tankldtd SpeSification, Versiori72

Pagel6 of 137

21

2.2
221
2211

2212

2.2.13

2.2.2
2221

2222

2 Logical Database Design

Schema Overview

The TPGDS schema models the sales and sales returns process for an organization that employs three primary

sales channels: stores, catalogs, and the Internet. The schema includes seven fact tables:

1 A pair o fact tables focused on the product sales and returns for each of the three channels
1 A single fact table that models inventory for the catalog and internet sales channels.

In addition, the schema includes 17 dimension tables that are associated wittssathannels. The following
clauses specify the logical design of each table:

1 The name of the table, along with its abbreviation (listed parenthetically)

1 Alogical diagram of each fact table and its related dimension tables

1 The highlevel definitions foreach table and its relationship to other tables, using the format defined in
Clause2.2

1 The scaling and cardinality information for each column

Column Definitions

Column Name

Each column is uniquely named, andleaolumn name begins with the abbreviation of the table in which it
appears.

Columns that are part of the tableds pr (Setdon®3 key ar

and2.4). If a table uses a composite primary key, then for convenience of reading the order of a given column
in a tableds primary key is I|listed in parentheses

Columns that are part of a business key aleated with (B) appearing after the column ngf®ection2.3
and2.4). A business key is neither a primary key nor a foreign key in the context of the dettawsar
schema. It is only used to differentiate new data from update data of the source tables during the data
maintenance operations.

Datatype

Each column employs one of the following datatypes:

a) ldentifier means that the colunshall be able todid any key value generated for that column.

b) Integer means that the colurehall be able to exactly represent integer values (i.e., values in increments of
1) in the range of at leagt 1") ® (2" *T 1), where n is 64

c) Decimal(d, f) means that the colurahall be ableéo represent decimal values up to and including d digits,
of which f shall occur to the right of the decimal place; the values can be either négatesseactly or
interpreted to be in this range.

d) Char(N) means that the colurshall be able to hold any string of characters of a fixed length of N.

Comment: If the string that a column of datatype char(N) holds is shorter than N characters, itimgn tra
spaces shall be stored in the database or the database shall automatically pad with spaces upon retrieval such
that a CHAR_LENGTH() function will return N.

e) Varchar(N) means that the colurshall be able to hold any string of charactdra wariable length with a
maximum length of N. Columns defined as "varchar(N)" may optionally be implemented as "char(N)".

f) Date means that the column shall be able to express any calendar day between January 1, 1900 and
December 31, 2199.

The datatypesalnot correspond to any specific S@tandard datatype. The definitions are provided to
highlight the properties that are required for a particular column. The benchmark implementer may employ any
internal representation or SQL datatype that meets tieoggrements.

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel7 of 137

f

2.2.2.3 The implementatiochosen by the test spondor a particular datatype definition shall be applied consistently
to all the instances of that datatype definition in the scher@eptfor identifier columnswhose datatype may
be selected to satisfy database scalagiirements.

2.2.3 NULLs

I f a column def i ni NULbscolumn this aoldnenss p@pulated N évery row dof thegable
for all scale fators. If the field is blank this column may contain NULLSs.

224 Foreign Key

If the values in this column join with another column, the foreign columns name is listedHordign Key
field of the column definition.

2.3 Fact Table Definitions
2.3.1 Store Sales (SS)
23.1.1 Stare Sales EFDiagram

Date Dimw- Store

ftem Store_Sales—+ Time_Dim |
Promotion
Customer_
Demographics Customer_| | Household_

Address | | Demographics

Income_
Band

Customer

2.3.1.2 Store Sales Column Definitions

Each row in this table represents a single lineitem for a sale made through the store channel and recorded in the
store_sales fact table.

Table 2-1 Store_sales Column Definitions

Column Datatype NULLs Primary Key Foreign Key
ss_sold_date_sk identifier d_date_sk
ss_sold_time_sk identifier t_time_sk
ss_item_sk (1) identifier N Y i_item_sk
ss_customer_sk identifier C_customer_sk
ss_cdemosk identifier cd_demo_sk
ss_hdemo_sk identifier hd_demo_sk
ss_addr_sk identifier ca_address_sk
ss_store_sk identifier s_store_sk
Ss_promo_sk identifier p_promo_sk

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel8of 137

Column Datatype NULLs Primary Key Foreign Key
ss_ticket_number (2) identifier N Y
SS_quantity integer
ss_wholesale_ab decimal(7,2)
ss_list_price decimal(7,2)
ss_sales_price decimal(7,2)
ss_ext_discount_amt decimal(7,2)
ss_ext_sales_price decimal(7,2)
ss_ext_wholesale cost decimal(7,2)
ss_ext_list_price decimal(7,2)
ss_ext_tax decimal(7,2)
SS_coupon_amt decimal(7,2)
ss_net_paid decimal(7,2)
ss_net_paid_inc_tax decimal(7,2)
ss_net_profit decimal(7,2)
2.3.2 Store Returns (SR)

2.3.2.1 Store Returns E®iagram

Date Dim Store

Store_Returns — Time_Dim |

Customer_
Demographics Customer_| | Household_
Address | | Demographics
Income_
Band
Customer
2.3.2.2 Store Returns Column Definition

Each row in this table represents a singleitam for the return of an item sold through the store channel and
recorded in the store_returns fact table.

Table 2-2 Store_returns Column Definitions

Column Datatype NULLs Primary Key Foreign Key
sr_returned_date_sk identifier d_date_sk
sr_return_time_sk identifier t_time_sk
sr_item_sk (1) identifier N Y i_item_sk,ss_item_sk
sr_customer_sk identifier C_customer_sk
sr_cdemo_sk identifier cd_demo_sk
sr_hdemo_sk identifier hd_demo_sk
sr_addr_sk identifier ca_adiress_sk
sr_store_sk identifier s_store_sk
sr_reason_sk identifier r_reason_sk
sr_ticket_number (2) identifier N Y ss_ticket_number
Sr_return_quantity integer

Sr_return_amt decimal(7,2)

Sr_return_tax decimal(7,2)

TPC Benc h m&tankdEd SpeSification, Version7d) Pagel9 of 137

Column Datatype NULLs Primary Key Foreign Key
sr_return_amt_inc_tax decimal(7,2)
sr_fee decimal(7,2)
sr_return_ship_cost decimal(7,2)
sr_refunded_cash decimal(7,2)
sr_reversed_charge decimal(7,2)
sr_store_credit decimal(7,2)
sr_net_loss decimal(7,2)
2.3.3 Catalog Sales (CS)

2.33.1 Catalog Sales ERiagram

Date Dim Catalog_Page

Call Center Warehouse
Item Catalog_Sales|— Time_Dim |
- Ship_Mode
Promotion
Customer_
Demographics Customer_| | Household_
Address | | Demographics
Income_
Band
Customer

2.3.3.2 Catalog Sales Column Definition

Each row in this table represents a single lineitem for a sale made through the catalog channel and recorded in
the catalog_sales fact table.

Table 2-3 Catalog Sales Column Definitions

Column Datatype NULLs Primary Key Foreign Key
cs_sold_date_sk identifier d_date_sk
cs_sold_time_sk identifier t_time_sk
cs_ship_date_sk identifier d_date_sk
cs_bill_customer_sk identifier C_customer_sk
cs_bill_cdemo_sk identifier cd_demo_sk
cs_bill_hdemo_sk identifier hd_demo_sk
cs_bill_addr_sk identifier ca_address_sk
cs_ship_customer_sk identifier c_customer_sk
cs_ship_cdemo_sk identifier cd_demo_sk
cs_ship_hdemo_sk identifier hd_demosk
cs_ship_addr_sk identifier ca_address_sk
cs_call_center_sk identifier cc_call_center_sk
cs_catalog_page sk identifier cp_catalog_page sk
cs_ship_mode_sk identifier sm_ship_mode_sk
cs_warehouse_sk identifier w_warehouse_sk
cs_item_sk (1) identifier N Y i_item_sk
cs_promo_sk identifier p_promo_sk
cs_order_number (2) identifier N Y

Cs_quantity integer

cs_wholesale_cost decimal(7,2)

cs_list_price decimal(7,2)

cs_sales_price decimal(7,2)

TPC Benc h m&tankdEd SpeSification, Version7d) Page20 of 137

Column Datatype NULLs Primary Key Foreign Key
cs_ext_discount_amt decimal(7,2)
cs_ext_sales_price decimal(7,2)
cs_ext_wholesale cost decimal(7,2)
cs_ext_list_price decimal(7,2)
cs_ext_tax decimal(7,2)
cs_coupon_amt decimal(7,2)
cs_ext_ship_cost decimal(7,2)
cs_net_paid decimal(7,2)
cs_net_paid_inc_tax decimal(7,2)
cs_net_paid_inc_ship decimal(7,2)
cs_net_paid_inc_ship_tax decimal(7,2)
cs_net_profit decimal(7,2)
2.34 Catalog Returns (CR)

2.34.1 Catalog Returns E®iagram

Date Dim+ [Catalog_Page]

Call Center Warehouse

Catalog_Returns|— Time Dim |

Ship_Mode
Customer_
Demographics Customer_| | Household_
Address | | Demographics
Income_
Band
Customer
2.3.4.2 Catalog Returns Column Definition

Each row in tis table represents a single lineitem for the return of an item sold through the catalog channel and
recorded in the catalog_returns table.

Table 2-4 Catalog_returns Column Definition

Colum Datatype NULLs Primary Key Foreign Key
cr_returned_date_sk identifier d_date_sk
cr_returned_time_sk identifier t_time_sk
cr_item_sk (1) identifier N Y i_item_sk,cs_item_sk
cr_refunded_customer_sk identifier C_customer_sk
cr_refunded_cdemo_sk identifier cd_demosk
cr_refunded_hdemo_sk identifier hd_demo_sk
cr_refunded_addr_sk identifier ca_address_sk
cr_returning_customer_sk identifier C_customer_sk
cr_returning_cdemo_sk identifier cd_demo_sk
cr_returning_hdemo_sk identifier hd_demo_sk
cr_returnng_addr_sk identifier ca_address_sk
cr_call_center_sk identifier cc_call_center_sk
cr_catalog_page_sk identifier cp_catalog_page_sk

TPC Benc h m&tankdEd SpeSification, Version7d) Page21 of 137

Colum Datatype NULLs Primary Key Foreign Key
cr_ship_mode_sk identifier sm_ship_mode_sk
cr_warehouse_sk identifier w_warehouse_sk
cr_reason_sk identifier r_reason_sk
cr_order_number (2) identifier N Y cs_order_number
cr_return_guantity integer
cr_return_amount decimal(7,2)
cr_return_tax decimal(7,2)
cr_return_amt_inc_tax decimal(7,2)
cr_fee decimal(7,2)
cr_return_ship_cost decimal(72)
cr_refunded_cash decimal(7,2)
cr_reversed_charge decimal(7,2)
cr_store_credit decimal(7,2)
cr_net_loss decimal(7,2)
2.35 Web Sales (WS)
2351 Web Sales Eiagram
Web_Site
Warehouse
b " Time_Dim
romation Web_Sales Shio Mod
Web_Page ip_Mode
(El)ustomer_h_ Customer_| | Household_
emographics Address | | Demographics
Income_
Customer Band
2.35.2 Web Sales Column Definition

Each row in this table represents a singleitém for a sale made through t
web_sales fact table.

Table 2-5 Web_sales Column Definitions

he web channel and recorded in the

Column Datatype NULLs Primary Key Foreign Key
ws_sold_date_sk identifier d_date sk
ws_sold_time_sk identifier t_time_sk
ws_ship_date_sk identifier d_date_sk
ws_item_sk (1) identifier N Y i_item_sk
ws_bill_customer_sk identifier c_customer_sk
ws_bill_cdemo_sk identifier cd_demo_sk
ws_bill_hdemo_sk identifier hd_demo_sk
ws_bill_addr_sk identifier ca_address_sk
ws_ship_customer_sk identifier c_customer_sk
ws_ship_cdemo_sk identifier cd_demo_sk
ws_ship_hdemo_sk identifier hd_demo_sk
ws_ship_addr_sk identifier ca_address_sk
ws_web_page sk identifier wp_web page sk
ws_web_site_sk identifier web_site_sk
ws_ship_mode_sk identifier sm_ship_mode_sk
ws_warehouse_sk identifier w_warehouse_sk
ws_promo_sk identifier p_promo_sk

TPC Bench m&tankldtd SpeSification, Versiori72

Page22 of 137

2.3.6

2.3.6.1

2.3.6.2

Column Datatype NULLs Primary Key Foreign Key
ws_order_number (2) identifier N Y
ws_quantity integer

ws_wholesale_cads decimal(7,2)

ws_list_price decimal(7,2)

ws_sales_price decimal(7,2)

ws_ext_discount_amt decimal(7,2)

ws_ext_sales_price decimal(7,2)
ws_ext_wholesale_cost decimal(7,2)

ws_ext_list_price decimal(7,2)

ws_ext_tax decimal(7,2)

ws_coupon_amt decimal(7,2)

ws_ext_ship_cost decimal(7,2)

ws_net_paid decimal(7,2)

ws_net_paid_inc_tax decimal(7,2)

ws_net_paid_inc_ship decimal(7,2)
ws_net_paid_inc_ship_tax decimal(7,2)

ws_net_profit decimal(7,2)

Web ReturnsWR)

Web Returns EMiagram

Web Page

Customer_

Demographics

Customer

Web Returns Column Definition

Each row in this table represents a single lineitem for the return of an item sold through the web sales channel
and recorded in the web_returns table.

Warehouse

Time_Dim
Web_Returns

hip_Mode

Customer_
Address

Household_
Demographics

Income_
Band

Table 2-6 Web_returns Column Definitions

Column Datatype NULLs Primary Key Foreign Key
wr_returned_date_sk identifier d_date_sk
wr_returned_time_sk identifier t time_sk
wr_item_sk (2) identifier N Y i_item_sk,ws_item_sk
wr_refunded_customer_sk identifier c_customer_sk
wr_refunded_cdemo_sk identifier cd_demo_sk
wr_refunded_hdemo_sk identifier hd_demo_sk
wr_refunded_addr_sk identifier ca_address_sk
wr_returning_customer_sk identifier c_customer_sk
wr_returning_cdemo_sk identifier cd_demo_sk

TPC Bench m&tankldtd SpeSification, Versiori72

Page23 of 137

Column Datatype NULLs Primary Key Foreign Key
wr_returning_hdemo_sk identifier hd demo_sk
wr_returning_addr_sk identifier ca_address_sk
wr_web_page_sk identifier wp_web_page_sk
wr_reason_sk identifier r_reason_sk
wr_order_number (1) identifier N Y ws_order_number
Wwr_return_quatity integer

wr_return_amt decimal(7,2)

wr_return_tax decimal(7,2)

wr_return_amt_inc_tax decimal(7,2)

wr_fee decimal(7,2)

wr_return_ship_cost decimal(7,2)

wr_refunded_cash decimal(7,2)

wr_reversed_charge decimal(7,2)

wr_accaint_credit decimal(7,2)

wr_net_loss decimal(7,2)

2.3.7 Inventory (INV)
2371 Inventory ERDiagram
Inventory Warehouse
A 4
Date_Dim

2.3.7.2 Inventory Column Definition

Each row in this table represents the quantity of a particular itehand at a given warehouse during a

specific week.

Table2-7 Inventory Column Definitions
Column Datatype NULLs Primary Key Foreign Key
inv_date_sk (1) identifier N Y d_date_sk
inv_item_sk (2) identifier N Y i_item_sk
inv_warehouse_sk (3) identifier N Y w_warehous_sk
inv_quantity_on_hand integer
24 Dimension Table Definitions
24.1 Store (S)
Each row in this dimension table represents details of a store.
Table 2-8: Store Column Definitions

Column Datatype NULLs PrimaryKey Foreign Key
s_store_sk identifier N Y
s_store_id (B) char(16) N
s_rec_start_date date
s_rec_end_date date
s_closed_date_sk identifier d_date_sk
s_store_name varchar(50)

TPC Benc h m&tankdEd SpeSification, Version7d) Page24 of 137

Column Datatype NULLs PrimaryKey Foreign Key
s_number_employees integer
s_floor_space integer
s_hours char(20)
S_manager varchar(40)
S _market id integer
S_geography_class varchar(100)
S_market_desc varchar(100)
s_market_manager varchar(40)
s_division_id integer
s_division_name varchar(50)
s_company_id integer
S_company_hame varchar(50)
s_street_number varchar(10)
S_street_name varchar(60)
S_street_type char(15)
s_suite_number char(10)
s_city varchar(60)
s_county varchar(30)
s_state char(2)
s_zip char(10)
s_country varchar(20)
s_gmt_offset decimal(5,2)
s_tax_percentage decimal(5,2)
2.4.2 Call Center (CC)

Each row in this table represents details of a call center.

Table 2-9 Call_center Column Definitions

Column Datatype NULLs Primary Key Foreign Key
cc_call_center_sk identifier N Y
cc_call_center_id (B) char(16) N
cc_rec_start date date

cc_rec_end_date date

cc_closed_date sk identifier d_date_sk
cc_open_date_sk identifier d_date_sk
cC_hame varchar(50)

cc_class varchar(50)

cc_employees integer

cc_sq_ft integer

cc_hours char(20)

CcC_manager varchar(40)

cc_mkt_id integer

cc_mkt_class char(50)

cc_mkt_desc varchar(100)

cc_market_manager varchar(40)

cc_division integer

cc_division_name varchar(50)

cC_company integer

cc_company_name char(50)

cc_street_number char(10)

cc_street_name varchar(60)

cc_street_type char(15)

cc_suite_number char(10)

cc_city varchar(60)

cc_county varchar(®)

cc_state char(2)

cc_zip char(10)

cc_country varchar(20)

cc_gmt_offset decimal(5,2)

cc_tax_percentage decimal(5,2)

243 Catalog_page (CP)

TPC Benc h m&tankdEd SpeSification, Version7d) Page25 of 137

Each row in this table represents details of a catalog page.

Table 2-10 Catalog Page Column Definitions

Column Datatype NULLs Primary Key Foreign Key
cp_catalog_page_sk identifier N Y
cp_catalog_page_id (B) char(16) N
cp_start_date_sk identifier d_date_sk
cp_end_date_sk identifier d_date_sk
cp_department varchar(50)
cp_catalog_number integer,
cp_catalog_page_number integer,
cp_description varchar(100)
cp_type varchar(100)
2.4.4 Web_site (WEB)

Each row in this table represents details of a web site.

Table 2-11 Web_site Column Definitions

Column Datatype NULLs Primary Key Foreign Key
web_site_ sk identifier N Y
web_site_id (B) char(16) N
web_rec_start_date date
web_rec_end_date date
web_name varchar(50)
web_open_date_sk identifier d_date_sk
web_close date sk identifier d_date_sk
web_class varchar(50)
web_manager varchar(40)
web_mkt_id integer
web_mkt_class varchar(50)
web_mkt_desc varchar(100)
web_market_manager varchar(40)
web_company _id integer
web_company_name char(50)
web_street_number char(10)
web_street_name varchar(60)
web_street_type char(15)
web_suite_number char(10)
web_city varchar(60)
web_county varchar(30)
web_state char(2)
web_zip char(10)
web_country varchar(20)
web_gmt_offset decimal(5,2)
web_tax_percentage decimal(5,2)
245 Web_page (WP)

Each row in this table represents details of a web page within a web site.

Table 2-12Web_page @lumn Definitions

Column Datatype NULLs Primary Key Foreign Key
wp_web_page_sk identifier N Y

wp_web_page_id (B) char(16) N

wp_rec_start_date date

wp_rec_end_date date

wp_creation_date_sk identifier d_date_sk
wp_access_date_sk identifier d_date_sk
wp_autogen_flag char(1)

wp_customer_sk identifier c_customer_sk
wp_url varchar(100)

wp_type char(50)

TPC Bench m&tankldtd SpeSification, Versiori72

Page26 of 137

Column Datatype NULLs Primary Key Foreign Key
wp_char_count integer

wp_link_count integer

wp_image_count integer

wp_max_ad_count integer

2.4.6 Warehouse (W)

Each ow in this dimension table represents a warehouse where items are stocked.

Table 2-13 Warehouse Column Definitions

Column Datatype NULLs Primary Key Foreign Key
w_warehouse_sk identifier N Y
w_warehouse_i@B) char(16) N
w_warehouse_name varchar(20)

w_warehouse_sq_ft integer

w_street_number char(10)

w_street_name varchar(60)

w_street_type char(15)

w_suite_number char(10)

w_city varchar(60)

w_county varchar(30)

w_state char@)

w_zip char(10)

w_country varchar(20)

w_gmt_offset decimal(5,2)

2.4.7 Customer (C)

Each row in this dimension table represents a customer.

Table 2-14: Customer Table Column Definitions

Column Datatype NULLs Primary Key Foreign Key
c_customer_sk identifier N Y

c_customer_id (B) char(16) N

c_current_cdemo_sk identifier cd_demo_sk
c_current_hdemo_sk identifier hd_demo_sk
c_current_addr_sk identifier ca_addres_sk
c_first_shipto_date sk identifier d_date_sk
c_first_sales_date sk identifier d_date_sk
c_salutation char(10)

c_first_name char(20)

c_last_name char(30)

c_preferred_cust flag char(1)

c_birth_day integer

c_birth_month integer

c_birth_year integer

c_birth_country varchar(20)

c_login char(13)

c_email_address char(50)

c_last_review date_ sk identifier d_date_sk
2.4.8 Customer_address (CA)

Each row in this table represents a unique customer address (each customer can have more than one address)

Table 2-15 Customer_address Column Definitions

Column Datatype NULLs Primary Key Foreign Key
ca_address_sk identifier N Y

ca_address_id (B) char(16) N

ca_street_number char(10)

TPC Benc h m&tankdEd SpeSification, Version7d) Page27 of 137

ca_street_name varcha(60)
ca_street_type char(15)
ca_suite_number char(10)
ca_city varchar(60)
ca_county varchar(30)
ca_state char(2)
ca_zip char(10)
ca_country varchar(20)
ca_gmt_offset decimal(5,2)
ca_location_type char(20)
2.4.9 Customer_dmographics (CD)
The customer demographics table contains one row for each unique combination of customer demographic
information.
Table 2-16 Customer_demographics Column Definitions
Column Datatype NULLs Primary Key Foreign Key
cd_demo_sk identifier N Y
cd_gender char(1)
cd_marital_status char(1)
cd_education_status char(20)
cd_purchase_estimate integer
cd_credit_rating char(10)
cd_dep_count integer
cd_dep_employed_count integer
cd_dep_college_count integer

2.4.10 Date_dim (D)

Each row in this table represents one calendar day. The surrogate key (d_date_sk) for a given row is derived
from the julian date being described by the row.

Table 2-17 Date_dim Column Definitions

Column Datatype NULLs Primary Key Foreign Key
d_date_sk identifier N Y
d_date_id (B) char(16) N
d_date date

d_month_seq integer

d_week_seq integer

d_quarter_seq integer

d_year integer

d_dow integer

d_moy integer

d_dom integer

d_qgoy integer

d_fy year integer

d_fy quarter_seq integer

d_fy week_seq integer

d_day name char(9)

d_quarter_name char(6)

d_holiday char(1)

d_weekend char(1)

d_following_holiday cha(l)

d_first dom integer

d_last_dom integer

d_same day ly integer

d_same_day Ig integer

d_current_day char(1)

d_current_week char(1)

d_current_month char(1)

d_current_quarter char(1)

d_current_year char(1)

TPC Benc h m&tankdEd SpeSification, Version7d) Page28of 137

2.4.11 Householddemographics (HD)
Each row of this table defines a household demographic profile.

Table 2-18 Household_demographics Column Definition

Column Datatype NULLs Primary Key Foreign Key
hd_demo_sk identifier N Y
hd_income_band_sk identifier ib_income_band_sk
hd_buy_potential char(15)
hd_dep_count integer
hd_vehicle_count integer

2.4.12 ltem (1)

Each row in this table represents a unique product formulation (e.g., size, color, manufactuer, etc.).

Table 2-19 Iltem Column Definition

Column Datatype NULLs Primary Key Foreign Key
i_item_sk identifier N Y
i_item_id (B) char(16) N
i_rec_start_date date
i_rec_end_date date
i_item_desc varchar(200)
i_current_price decimal(7,2)
i_wholesale_cost decimal(7,2)
i_brand_id integer
i_brand char(50)
i_class_id integer
i_class char(50)
i_category id integer
i_category char(50)
i_manufact_id integer
i_manufact char(50)
i_size char(20)
i_formulation char(20)
i_color char(20)
i_units char(10)
i_container char(10)
i_manager _id integer
i_product_name char(50)
2.4.13 Income_band (IB)

Each row in this table represents details of an income range.

Table 2-20: Income_band Column Definitions

Column Datatype NULLs Primary Key Foreign Key
ib_income_band_sk identifier N Y

ib_lower_bound integer

ib_upper_bound integer

2.4.14 Promotion (P)
Each row in this table repra#s details of a specific product promotion (e.g., advertising, sales, PR).

Table 2-21: Promotion Column Definitions

Column Datatype NULLs Primary Key Foreign Key
p_promo_sk identifier N Y

p_promo_id (B) char(16) N

p_start_date_sk identifier d_date_sk
p_end_date sk identifier d_date_sk
p_item_sk identifier i_item_sk

TPC Benc h m&tankdEd SpeSification, Version7d) Page29 of 137

2.4.15

2.4.16

2.4.17

Column

Datatype

NULLs

Primary Key

Foreign Key

p_cost

decimal(15,2)

p_response_target

integer

p_promo_name char(50)
p_channel_dmail char(1)
p_channel_email char(1)
p_channel_catalog char(1)
p_channel_tv char(1)
p_channel_radio char(1)
p_channel_press char(1)
p_channel_event char(1)
p_channel_demo char(1)
p_channel_details varchar(100)
p_purpose char(15)
p_discount_active char(1)

Reason (R)

Each row in this table represents a reason why an item was returned.

Table 2-22: Reason Column Definitions

Column Datatype NULLs Primary Key Foreign Key
r_reason_sk identifier N Y
r_reason_idB) char(16) N
r_reason_desc char(100)

Ship_mode (SM)

Each row in this table represents a shipping mode.
Table 2-23: Ship_mode Column Definitions

Column Datatype NULLs Primary Key Foreign Key
sm_shipmode_sk identifier N Y
sm_ship_mode_id (B) char(16) N
sm_type char(30)
sm_code char(10)
sm_carrier char(20)
sm_contract char(20)

Time_dim (T)

Each row in this table represents one second.
Table 2-24: Time_dim Column Definitions

Column Datatype NULLs | Primary Key Foreign Key
t time_sk Identifier N Y
t_time_id (B) char(16) N
t_time Integer
t_hour Integer
t_minute Integer
t_second Integer
t_ am_pm char(2)
t_shift char@0)
t_sub_shift char(20)
t_meal_time char(20)

TPC Benc h m&tankdEd SpeSification, Version7d) Page30of 137

2.4.18

2.5
251
2511

2512

2513

2514

2515

2516

2517

2518
2519

252

dsdgen_version

This table is not employed during the benchmark. A flat file is generated by dsdgen (see Appendix F), and it can
be helpful in assuring that the current data set was built withotineat version of the TROS toolkit. It is
included here for completeness.

Table 2-25: dsdgen_version Column Definitions

Column Datatype NULLs Foreign Key
dv_version Varchar(16) N
dv_create date date N
dv_create_time time N
dv_cmdline_args Varchar(200) N

Implementation Requirements

Definition of Terms

The tables defined in Claug3 and Claus@.4 are referred tasbase tablesThe flat file data generated by
dsdgencorresponding to each base table and loaded into each base table is referred to as base table data. A
structure containing base table data is referred to as a base table data structure.

Other than théase table data structures, any database structure that cartajmgof, reference to, or data

computed from base table data is defined asuadliary data structure\DS). The data in the ADS is

materialized from the base table data; referencea fmen of materialization. There is an essential distinction
between base table data contained in a base table data structure and data contained in auxiliary data structures.
Because auxiliary data structures contaipiesof, referencego, or data corputed frombase table data,

deleting data from an auxiliary data structure does not result in the loss of base table data in that it is still
contained in the base table data structure. In contrast, deleting data from a base table data structure (in the
absence of copies in any auxiliary data structures) does result in the loss of base table data.

There are two types of auxiliary data structures: Implicit and explicit. An explicit auxiliary data structure
(EADS) is created as a consequence of a direatixe DDL, session options, global configuration parameters).
These directives are called EADS Directives. Any ADS which is not an EADS is by definition an Implict ADS
(IADS).

Comment: In contrast to an impliciADS, anEADS would not have been created without tirective.

The assignment of groups of rows from a tall&ADSto different files, disks, or areas is defined as
horizontal partitioning

The assignment of groups of columns of one or more rows to files, disks, or areas different from those storing
the dher columns of these rows is definedvasgtical partitioning

A Primary Keyis one or more columns that uniquely identifies a row. None of the columns that are part of the
Primary Keymay be nullable. A table must have no more thanRyimeary Key. A pimary keymaybe
enforced, e.g. by a primary key constraint.

A Foreign Keyis a column or combination of columns used to establish a link between the data in two tables.
A link is created between two tables by adding the column or columns that holblEsEmary Keyvalues

to the other table. This column becomédaeign Keyin the second tablé foreign keymaybe enforced, e.qg.

by a foreign key constraint.Referential Integi#ya data propertwhereby & oreign Keyin one table has a
corresponihg Primary keyin a different table.

The definition of primary and foreign keys is optional.

Whenever this specification refers to a set of primary and foreign keys it refers to the set of primary and foreign
keys defined in clauses3and2.4.

Data Processing Syster& Tables

TPC Benc h m&tankdEd SpeSification, Version7d) Page31of 137

2521 Thedata processing systeshall be implemented usinggenerallyavailableand supportedystem(DBMS).

25.2.2 The SQL data definition statements amskociated sipts used tomplement the logideschema definition a&r
defined as th®DL.

2523 The daabase whiclis built and utilized to run thQuery Validation testis defined as the qualification

database
2524 The database whick built and utilized for performance reporting is defined as the test database
2525 The physical clustering of records of different tables within the database is allowed as long as this clustering

does not alter the logical relatiships of each table.

Comment: The intent of this clause is to permit flexibility in the physical layout of a database and based upon
the defined TPEDS schema.

2.5.2.6 Table names should match those provided in Clausend Gause2.4. If the data processing systgmnevents
the use of the table names specified in Clau8and Clause.4, they may beltered provided that:
1 The name changes are minimal (e.g., short prefix or suffix.)
1 The name changes have no performance impact
1 The name changes are also made to the query set, in compliance with42aRise

25.2.7 Eachtable listed in Claus2.3and Clause.4, shall be implemented according to the column definitions
provided above.

25.2.8 The column names used in thenchmarkmplementatiorshall match those defined for each column specified
in Clause2.3and Clause.4. If the data processing systepnevents the use of the column names specified in
Clause2.3and Clause.4, they may be altered provided:
1 The name changes are the minimal changes required (e.g., short prefix or suffix or character substitution.)
1 The changediames are required to follow the documented naming convention employedyrstie

used for the benchmark implementation

1 The names used must provide no performance benefit compared to any other names that might be chosen.
1 The identical name changes makto be made to the query set, in compliance with Clause 4.2.3

2.5.2.9 The columnswithin a given table may be implemented in any order, but all columns listed in the table definition
shall be implemented and there shall be no columns added to the tables.

2.5.2.10 Each tabe column defined in Clause3and Claus®.4 shall be implemented as discrete columns and shall be
independently accessible by ttiata processing systeas a single damn. Specifically:
1 Columns shall not be merged. For example, C_LOGIN and C_EMAIL_ADDRESS cannot be implemented
as two sukparts of a single discrete column C_DATA.
1 Columns shall not be split. For example, P_TYPE cannot be implemented as two discretes colum
P_TYPE_SUBSTRL1 and P_TYPE_SUBSTR2.

25211 The database shall allow for insertion ofandarbitrary
optional constraints defined in accordance with Cl&usel

253 Explicit Auxiliary Da ta Structures (EADS)

253.1 Except as provided in this section, replication of database objects (i.e., tables, rows or columns) is prohibited.

253.2 An EADSwhich does not include data materialized from Catalog_Sales or Catalog_Resubpect to the
following limitations:
1 It may materialize data from no more than base table
1 It may materialize all or some of the following three items:
1. The primary key or any subset of PK columns if the PK is a compound key
2. Pointers or references to corresponding base table(raavs g. , fAr ow | Dso) .
3. At most one of the following:
a) A foreign key or any subset of the FK columns if the FK is a compound key
b) A column having a date data type
c) A column that is a business key

TPC Benc h m&tankdEd SpeSification, Version7d) Page32of 137

2.5.3.3 An EADSwhich includes data materialized from Catalog_Sales ol@ptReturngnay not include any data
materialized from Store_Sales, Store_Returns, Web_Sales, Web_Returns or Inventory.

2534 An EADS which materializes data from both fact and dimension tables must be the result of joining B FK
related columns.

2535 An EADS which materializes data from one or more dimension tables without simultaneously materializing
data from Catalog_Sales and/or Catalog_Returns is disallowed, unless otherwise permitted by Clause 2.5.3.2.
An EADS which materializes data from one or more disien tables must materialize at least one dimension
row for every fact table row, unless the foreign key value for a dimension row is null.

Comment: The intent is to prohibit the creation of EADS on only dimension tables, except as allowed by
clause 2.5.3.3.

2.5.3.6 Thebenchmarkmplementation of EADS may involve replication of selected data from the base tables
provided that:
1 All replicated data are managed by fystem used for the benchmark implementation
1 All replications are transparent to all data manipulation digera

2.5.3.7 The creation of all EADS must be included in the database load test (see Clause 7.4.3). EADS may not be
created or deleted during the performance test.

2538 Partitioning

2.5.3.8.1 Alogical table space is a named collection of physical storage devices refereacgdgs, logically
contiguous, nodivisible entity.

2.5.3.8.2 TheDDL mayinclude syntax that directs a table in its entirety to be stored in a particular logical table space.

2.5.3.8.3 Horizontal partitioning obase tablesor EADS is allowed. If the partitioning is a fation of data in the table
or auxiliary data structure, the assignment shall be based on the values in the partitioning column(s). Only
primary keys, foreign keys, date columns and date surrogate keys may be used as partitioning columns. If
partitioning DOL uses directives that specify explicit partition values for the partitioning columns, they shall
satisfy the following conditions:

1 They may not rely on any knowledge of the data stored in the partitioning column(s) except the minimum
and maximum value®f those columns, and the definition of data types for those columns provided in
Clause2.

1 Within the limitations of integer division, they shall define each partition to accept an equal portion of the
range baween the minimum and maximum values of the partitioning column(s).

1 For datebased partitions, it is permissible to partition into equally sized domains based upon an integer
granularity of days, weeks, months, or yeatkusing the Gregorian calendée.g., 30 days, 4 weeks, 1
month, 1 year, etc.). For dal@sed partition granularities other than days, a partition boundary may extend
beyond the minimum or maxi mum boundaries as estab
in Clause 3.4

1 The directives shall allow the insertion of values of the partitioning column(s) outside the range covered by
the minimum and maximum values, as required by Clause 1.5.

If any directives or DDL are used to horizontally partition data, the directives, DLgtapr details necessary
to replicate the partitioning behavior shall be disclosed.

Multi-level partitioning of base tables or auxiliary data structures is allowed only if each level of partitioning
satisfies the conditions stated above.

2.5.3.8.4 Vertical partitioning ofbase tablesor EADS is allowed when meeting all of the following requirements:

1 SOQL DDL that explicitly partitions data vertically is prohibited.
1 SQL DDL must not contain partitioning directives which influence the physical placement of data on
durable media.

TPC Benc h m&tankdEd SpeSification, Version7d) Page33of 137

1 The row must be logically presented as an atomic set of columns.

Comment: This implies that vertical partitioning which does not rely upon explicit partitioning directives is
allowed. Explicit partitioning directives are those that assign groups ahoslof one row to files, disks or
areas different from those storing the other columns in that row.

2.5.4 Constraints

254.1 The use oboth enforced and unenforcednstraints is permittedf constraints are used, they shall satisfy the
following requirements:
1 Enforced constraints shall be enforced either at the statement level or at the transaction level
1 Unenforcedconstraintanustbe validatedafter al data is loaded during the Lodast and before the start
of the Performance Test
They are limited to primary keyoreign key, and NOT NULL constraints
NOT NULL constraints a allowed on EADSand tables. Only columns that are marké'dn their
logical table definitior{or columns in EADSs derived from such columeah be constrained with NOT
NULL.

f
1

2542 If foreign key constraints are defined and enforced, there is no specific requirement for a particular
delete/update action when enforcing a constraint (e.g., ANSI SQL RESTRICT, CASCADE, NO ACTION, are
all acceptable).

2.6 Data Access Transparency Requirements

2.6.1 Data Acces Transparency is the property of the system that removes from the query text any knowledge of the
physical location and access mechanisms of partitioned data. No finite series of tests can prove that the system
supports complete data access transpard@iwy/ requirements below describe the minimum capabilities needed
to establish that the system provides transparent data aBdesschmark implementatiadhat uses horizontal
partitioning shall meet the requirements for transparent data access desc@lmce®R.6.2and2.6.3

Comment: The intent of thiclause is to require that access to physically and/or logically partitioned data be
provided directly and transparently by seesémplemented bgenerallyavailable layers such as the

interactive SQL interface, thaata processing systethe operating system (OS), the hardware, or any
combination of these.

2.6.2 Each of the tables described in Cla@sgand Claus.4 shall be identifiable by names that have no
relationship to the partitioning of tables. All data manipulation operations in the executable query text (see
Clause3) shall use only these names.

2.6.3 Using the names which satisfy Clawsé.2 any arbitrary nofTPGDS query shall be able to reference any set
of rows or columns that is:

1 Identifiable by any arbitrargondition supported by the underlyisgstem
1 Using the names described in Cla@sg.2and using the same data manipulation semantics and syntax for
all tables

For example, the semantics and syntax used to queasbérary set of rows in any one table shall also be
usable when querying another arbitrary set of rows in any other table.

Comment: The intent of this clause is that each TBS query uses general purpose mechanisms to access
data in the database.

TPC Benc h m&tankdEd SpeSification, Version7d) Page34 of 137

3 Scaling and Database Population

This clause defines the database populaimhhow it scales.

3.1 Scaling Model

3.1.1 The TPCDS benchmar k defines a secaefactwsi) dbascedkte@en stclad i amp
of the raw data produced lbgdgen The actual byte count may vary depending on individual hardware and
softwae platforms.

3.1.2 The set of scale factors defined for PGS is:
T 1TB, 3TB, 10TB, 30TB, 100TB
where terabyte (TB) is defined to b& Bytes.

Comment: The maximum size of the test database for a valid performance test is currently set at 100TB. The
TPC recognizes thatditional benchmark development work is necessary to allowDB@®o scale beyond
that limit.

3.1.3 Each defined scale factor has an associated val&Ha unitless quantity, roughly equivalent to the number
of gigabytes of data present in the data waredotise relationship between scale factors and SF is summarized
in Table3-1 Scale Factor and SF

Table 3-1 Scale Factor and SF

Scale Factor SF
1TB 1000
3TB 3000
10TB 10000
30TB 30000
100TB 100000
3.14 Test sponsors may choose any scale factor from the defined 9¢oiegher scale factors may be used for a
TPGDS result.
3.1.5 Results at the different scale factors are not comparable, due to the substantially diffepenatonal
challenges found at different data volumes.
3.2 Test Database Scaling
3.2.1 Test databasés the database used to execute the database load test and the performance test (3e$ Clause
3.2.2 The required row courior each permissible scale factor and each table in the test database is detaitdd in
3-2 Database Row Counts
Comment: The 1GB entries are used solely for the qualification database (see &Rudsand are included
here for ease of reference.
3.2.3 The row size information provided is an estimate, and may vary from one benchmark submission to another

TPC Bench m&tankldtd SpeSification, Versiori72

depending on the precise data base implementation that is selected.\idegrwlely to assist benchmark
sponsors in the sizing of benchmark configurations.

Page35 of 137

3.3
331
3.3.2

Table 3-2 Database Row Counts

Table Ayr Rov| Sample Row Counts. Number of rows are within 1f1B6rcent offtese numbers
?Zb‘;tes 1GB 1TB 3TB 10TB 30TB 100TB

call_center 30! 6 42 48 54 60 6q
catalog_page 13¢ 11,718 30,00 36,000 40,000 46,00 50,00
catalog_returns 16 144,067 | 143,996,756] 432,018,033| 1,440,033,112| 4,319,92509 14,400,175,817
catalog_sales 22(1,441,548 | 1,439,980,416] 4,320,078,880| 14,399,964,710| 43,200,404,82 143,999,334,34
customer 13] 100,000 | 12,000,000 30,000,000 65,000,000 80,000,00 100,000,00
customer_address 4,0 500p 6,000,000 15,000,000 32,500,000 40,000,00 50,000,00
customer_

demographics 4] 1,920,800| 1,920,800 1,920,800 1,920,800 1,920,80 1,920,80
date_dim 14] 73,049 73,049 73,049 73,049 73,04 73,04
household_

demographics 2] 7,200 7,200 7,200 7,200 7,20 7,20
income_band 1 20 20 20 20 24 2q
inventory 14 11,745,000 783,000,000 1,033,560,000] 1,311525,000| 1,627,857,00 1,965,337,83
ftem 28] 18,000 300,000 360,000 402,000 462,00 502,00
promotions 124 300 1,500 1,800 2,000 2,30 2,50
reason 34 35 65 67 70 72 75
ship_mode 5¢ 20 20 20 20 20 2(
store 26 12 1,002 1,350 1,500 1,704 1,904
store_retuns 13{ 287,514 | 287,999,764| 863,989,652| 2,879,970,104| 8,639,952,11 28,800,018,82
store_sales 16{ 2,880,404 | 2,879,987,999| 8,639,936,081| 28,799,983,563 86,399,341,81 287,997,818,08
time_dim 5 86,400 86,400 86,400 86,400 86,40 86,40
warehouse 11] 5 20 22 25 21 30
web_page o 60 3,000 3,600 4,002 4,607 5,004
web_returns 16] 71,763 | 71,997,522| 216,003,761| 720,020,485 2,160,007,34 7,199,904,45
web_sales 220 719,384 | 720,000,376| 2,159,968,881 7,199,963,324| 21,600,036,51 71,999,670,1¢
web_site 29; 30 54 66 78 84 9¢

Qualification Database Scaling
The Qualification databaseis the database used to execute the query validation test (see TBuse

The intent is that the functionality exercisedrbpning the validation queries against the qualification database

be the same as that exercised against the test database during the performance test. To this end, the qualification
database must be identical to the test database in virtually every (egeegt size), including but not limited

to:

a) Column definitions

b) Method of data generation and loading (but not degree of parallelism)
c) Statistics gathering method

d) Data accessibilitymplementation

e) Type of partitioning (but not degree of partitioning)

TPC Benc h m&tankdEd SpeSification, Version7d) Page36 of 137

f) Replication
g) Table type (if there is a choice)
h) EADS (e.g., indices)

3.3.3 The qualification database may differ from the test database only if the difference is directly related to the
difference in sizes. For example, if the test database employs horizontal pagi{ese Claus2.5.3.7, then
the qualification database must also employ horizontal partitioning, though the number of partitions may differ
in each case. As another example, the qualification database caddflgrired such that it uses a
representative subet of the CPUs, memory and disks used by the test database configuration. If the
qualification database configuration differs from the test database configuration in any way, the differences
must be disdsed

3.34 The qualification database must be populated usdigen and use a scale factor of 1GB.

3.35 The row counts of the qualification database are defined in ChaRise

3.4 dsdgen and Database Population

34.1 The tesdatabasand the qualification database must be populated with data produdsddsn the TPC

supplied data generator for THIZS. The major and minor version numbeidstigenmust match that of the
TPCDS specification. The source code @imdgenis provided apart of the electronically downloadable
portion of this specification (sef&ppendix B.

3.4.2 The data generated bigdgenare meant to be compliant wiltable3-2 andTable5-2. In case of differences
between the table and the data generatedstgen Table3-2 andTable5-2 prevail.

3.4.3 Vendors are allowed to modify tlisdgencode for both the itial database population and the data
maintenance. However, the resultant data must meet the following requirements in order to be considered
correct:

a) The content of individual columns must be identical to that producelddyen

b) The data format of ingidual columns must be identical to that producedi$ygen

¢) The number of rows generated for a given scale factor must be identical to that spediéibl 812 and
Table5-2.

If a modified version of dsdgen is used, the modified source code must be disclosed in full. In addition, the
auditor must verify that the modified source code which is disclosed matches the data generation program used
in the benchmark execution.

Comment: The intent of this clause is to allow for modification of the dsdgen code required for portability or
speed, while precluding any change that affects the resulting data. Minor changes for portability or bugs are
permitted in dsdgen for both initial datalgapopulation and data maintenance.

3.4.4 If modifications are restricted to a subset of the source code, the vendor may publish only the individual dsdgen
source code files which have been modified.

3.4.5 The output of dsdgen is texthe content of each field isminatedby '|' A'['in the first position of aow
indicates that the first colunof the rowis empty Two consecutivg' indicatethat the given column value is
empty Empty column values are only generateddolumns that are NULlable as specifieth the logical
database desigempty column valug as generated by dsdgenust be treated as NUL\lalues in the data
processing system, i.e. the data processing system must be able to retrievaiNé&tblumns using 'is null'
predicates.

Comment: The data gegrated by dsdgen includes some international characters. Examples of international
characters are O and E. The database must preserve these characters during loading and processing by using a
character encoding such as ISO/IEC 8858at includes theseharacters.

TPC Benc h m&tankdEd SpeSification, Version7d) Page37 of 137

3.5 Data Validation

The tesdatabasenust be verified for correct data content. This must be done after the initial database load and
prior to any performance tests. A validation data set is produceddsiggnwi t h-vtah e diat ed and |
vecomt 6 options. Thwec oni mti donuims va0 uewhioch ipr oduces 50
tabl es. The exceptions being the Areturnso fact t a
dimension tables with fewer than 50 totalveo

All rows produced in the validation data set must exist in the test database.

TPC Benc h m&tankdEd SpeSification, Version7d) Page38of 137

4 Query Overview

4.1 General Requirements and Definitions for Queries

41.1
41.1.1

Comment:

Comment:

41.1.2

41.2
41.2.1
4.1.3

41.3.1

41.3.2

4.1.3.3

41.3.4
4.1.3.5

4.1.3.6

4.1.3.7

Query Definition and Availability

Each query is described by the following components:

a) A business questiomvhich illustrates the business context in which the query could be used. The business
guestions are listed in Appendix B.

b) The functional query definition, as specified in the TR@plied query templat(see Clausé.1.2for a
discussion of Functional Query Definitions)

¢) The substitution parametgmwhich describe the substitution values neddegbnerate the executable query
text

d) The answer sewhich is used in query validation (see Clads®

Some functional query definitionsdlude a limit on the number of rows to be returned by the query. These
limits are omitted from the business question.

In cases where the business question does not accurately describe the functional query definition, the latter will
prevail.

Due to the lage size of the TPDS query set, this document does not contain all of the query components.
Refer toTable0-1 Electronically Available Specification Materifdr information on obtaining the query set.

Functioral Query Definitions
The functionality of each query is defined by its query templatedagden.

dsqgentranslates the query templates into fully functional SQL, which is knoweneutable query text

(EQT). The major and minor version numberdsfggenmust match that of the TROS specification. The

source code fodsqgenis provided as part of the electronically downloadable portion of this specification (see
Table0-1 Electronically Available Specification Materjal

The query templategre primarily phrased in compliance with SQL1999 core (with OLAP amendments). A
template includes the following, nestandard additions:
1 They are annotad, where necessary, to specify the number of tovee returned
1 They include substitution tags that, in conjunction wiglqgen allow a single template to generate a large
number of syntactically distinct queries, which are functionally\ejent

The executable query text for each query in a compliant implementation must be taken from either the
functional query definition or an approved query variant (see Clause Appendix C). Except as specifically
allowed in Claused.2.3 Error! Reference source not foundand4.2.5 executable query text must be used in
full, exactly as provided by the TPC.

Any query template wose EQT does not match the functionality of the corresponding EQT produced by the
TPG-supplied template is invalid.

All query templates and their substitution parameters shall be disclosed.

Benchmark sponsors are allowed to alter the precise phrasinguefry template to allow for minor differences
in product functionality or query dialect as defined in Clau2e3

If the alterations allowed by Claude?2.3are not sufftient to permit a benchmark sponsor to produce EQT that
can be executed by the DBMS selected for their benchmark submission, they may submit an alternate query
template for approval by the TPC (see Cladi2e3.4.

If the query template used in a benchmark submission is not identical to a template supplied by the TPC, it must
satisfy the complianceequirements of Clausds2.3 Error! Reference source not found.and4.2.5

TPC Benc h m&tankdEd SpeSification, Version7d) Page39 of 137

4.2
421

422

4.2.3
4231

42.3.2

4.2.3.3
4.2.3.4

Query Modification Methods

The queries must be expressed in a commercially available implementation of the SQL languadee Size t
SQL language is continually evolving, the TS benchmark specification permits certain deviations from the
SQL phrasing used in the TPDpplied query templates.

There are four types of permissible deviations:

a) Minor query modifications, defined iClause4.2.3

b) Modifications to limit row counts, defined in clauée.4
¢) Modifications for extraction queries, defined in clads2.5
d) Approved query variants, defined in Appendix C

Minor Query Modifications

It is recognized that implementations require specific adjustments for their operating environment and the
syntactic variations of its dialect of the SQL language. The query modificatésesibed in Clausé.2.3.4

1 Are defined to be minor

1 Do not require approval

1 May be used in conjunction with any other minor query modifications

1 May be used to modify either a functional query definition or an ajggreariant of that definition

Modifications that do not fall within the bounds described in Clduge3.4are not minor and are not compliant
unless they are an integral part of an approved query variant (serdbp@?.

Comment: The only exception is for the queries that require a given number of rows to be returned. The
requirements governing this exception are given in Clause 4.2.4.1

The application of minor query modifications to functional query definitions or apgneargants must be
consistent over the query set. For example, if a particular vespamific date expression or table name syntax
is used in one query, it must be used in all other queries involving date expressions or tabl&émames.
following query mdlificationsare exempt fronthis requirement: e5, f2, 6, f10, g2 and g3.

The use of minor modifications shall be disclosed and justified (see dlais4.4.

The following query modifications are minor:

a) Tables:

1. Table names The table and view names found in the CREATE TABLE, CREATE VIEW, DROP
VIEW and FROM clause of each query may be modified to reflect the customary naming conventions
of the system under test.

2. Tablespace reference€REATE TABLE statemets may be augmented with a tablespace reference
conforming to the requirements of Clause 3.

3. WITH() clause- Queries using the "with()" syntax, also known as common tablespitessions, can
be replaced with semantically equivalent derived tables or views

b) Joins:

1. Outer Join For outer join queries, vendor specific syntax may be used instead of the specified syntax.
For example, the join expression "CUSTOMER LEFT OUTER JOIN ORDERS ON C_CUSTKEY =
O_CUSTKEY"™ may be replaced by adding CUSTOMER and ORDERBe from clause and adding
a speciallymarked join predicate (e.g., C_CUSTKEY *= O_CUSTKEY).

2. Inner Join- For inner join queries, vendor specific syntax may be used instead of the specified syntax.
For example, the join expression "FROM CUSTOMER, ORBBRHERE C_CUSTKEY =
O_CUSTKEY" may be modified to use a JOIN clause such as "FROM CUSTOMER JOIN ORDERS
ON C_CUSTKEY = O_CUSTKEY".

¢) Operators:

TPC Benc h m&tankdEd SpeSification, Version7d) Page40 of 137

1. Explicit ASC- ASC may be explicitly appended to columns in an ORDER BY clause.

2. Relational operatorsRelationdoperators used in queries such as "<", ">", "<>") "<=" and "=", may be
replaced by equivalent vendspecific operators, for example ".LT.", ".GT.", "I=" or "=", ".LE.", and
"=="| respectively.

3. String concatenation operatoFor queries which use stig concatenation operators, vendor specific
syntax can be used (e.g. || can be substituted with +).

4. Rollup operator an operator of the form "rollup (x,y)" may be substituted with the following operator:
"X,y with rollup”. x,y are expressions.

d) Controlstatements:

1. Command delimiters Additional syntax may be inserted at the end of the executable query text for the
purpose of signaling the end of the query and requesting its execution. Examples of such command
delimiters are a semicolon or the word "GO"

2. Transaction control statement& CREATE/DROP TABLE or CREATE/DROP VIEW statement may
be followed by a COMMIT WORK statement or an equivalent verspecific transaction control

statement.
3. Dependent viewsIf an implementation is using variants invaigiviews and the implementation only
supports ADROP RESTRICTO semantics (i .e., al |l d e

additional DROP statements for the dependent views may be added.
) Alias:

1. Selectlist expression aliasesor queries thaniclude the definition of an alias for a SELEGSt item
(e.g., "AS" clause), vendapecific syntax may be used instead of the specified syntax. Examples of
acceptable implementations include "TITLE <string>", or "WITH HEADING <string>". Use of a
selectlist expression alias is optional.

2. GROUP BY and ORDER BY For queries that utilize a view, nested tabkpression, or seledist
alias solely for the purposes of grouping or ordering on an expression, vendors may replace the view,
nested tablexpressioror selectlist alias with a vendespecific SQL extension to the GROUP BY or
ORDER BY clause. Examples of acceptable implementations include "GROUP BY <ordinal>",
"GROUP BY <expression>", "ORDER BY <ordinal>", and "ORDER BY <expression>".

3. Correlation name- Tablename aliases may be added to the executable query text. The keyword "AS"
before the tablmame alias may be omitted.

4. Nested tablexpression aliasingFor queries involving nested tabdepressions, the nested keyword
"AS" before the table aliamay be omitted.

5. Column alias column name alias may be added for columns in any SELECT list of an executable
query text. These column aliases may be used to refer to the column in later portions of the query, such
as GROUP BY or ORDER BY clauses.

f) Expressions and functions:

1. Date expressionsFor queries that include an expression involving manipulation of dates (e.g.,
adding/subtracting days/months/years, or extracting years from dates),-spediic syntax may be
used instead of the specified syxtExamples of acceptable implementations include
"YEAR(<column>)" to extract the year from a date column or "DATE(<date>) + 3 MONTHS" to add 3
months to a date.

2. Output formatting functions Scalar functions whose sole purpose is to affect output fangdguch
as treatment of null strings) or intermediate arithmetic result precision (such as COALESCE or CAST)
may be applied to items in the outermost SELECT list of the query.

3. Aggregate functions At large scale factors, the aggregates may exceedrige od the values
supported by an integer. The aggregate functions AVG and COUNT may be replaced with equivalent
vendorspecific functions to handle the expanded range of values (e.g., AVG_BIG and COUNT_BIG).

4. Substring Scalar Functiorgor queries whicluse the SUBSTRING() scalar function, vendpecific
syntax may be used instead of the specified syntax. For example, "SUBSTRING(S_ZIP, 1, 5)".

TPC Benc h m&tankdEd SpeSification, Version7d) Page4l of 137

424
4241

5. Standard Deviation FunctiorFor queries which use the standard deviation function (stddev_samp),
vendor specit syntax may be used (e.g. stdev, stddev).

6. Explicit Casting- Scalar functions (such as CAST) whose sole purpose is to affect result precision for
operations involving integer columns or values may be applied. The resulting syntax must have
equivalent semntic behavior.

7. Mathematical functionsVendors specific mathematical expressions may be used to implement
mathematical functions in the executable query text. The replacement syntax must implement the full
semantic behavior (e.g. handling for NULLSs) bétmathematical functions as defined in the ISO SQL
standard. For example, avg() may be replaced by average() or by a mathematical expressions such as
sum()/count().

8. Date casting Explicit casting of columns that are of the date datatype, as defineduseC?.2.2, and
date constant strings, expressed in month, day and year, into a datatype that allows for date arithmetic in
expressions is permissible. Replacement syntax must have equivalent semantic behavior.

9. Casting syntax: Vendor specific casting siex may be used to implement casting functions present in
the executable query text provided that the vendor specific casting syntax is semantically equivalent to
the syntax provided in the executable query text.

10. Existing scalar functionsExisting scalafunctions (such as CAST) in the query templates whose sole
purpose is to affect output formatting or result precision may be modified. The resulting syntax must be
consistent with the query template's original intended semantic behavior.

Comment: At higher scaldactors some of the existing scalar functions might need adjustments to enable the
benchmark to be run successfully at the intended scale factor. For example, to avoid numeric overflow at the
intended scale factor, changing the CAST of a column from d¥difsat) to wider decimal(31, 4) is allowed.”

g) General

1. Delimited identifiers In cases where identifier names conflict with reserved words in a given
implementation, delimited identifiers may be used.

2. ParenthesesAdding or removing parentheses arowxpressions and stdueries is allowed. Both an
opening parenthesis ‘(' and its corresponding closing parenthesis ')’ must be added or removed together.

3. Ordinals- Ordinals can be exchanged with the referenced column name, or vice versa. E.g. "select a,b
from T order by 2;" can be rewritten to "select a,b from T order by b;".

Comment: The application o&ll minor query modifications must result in queries that have equivalent ISO
SQL semantic behavior as the queries generated from thestipiflied query templates.

Comment: All query modifications are labeled minor based on the assumption that they do not significantly
impact the performance of the queries

Row Limit Modifications

Some queries require that a given numberoffoves r et ur ned (&. d.0, sfeRetcurerd trhoew
the number of rows to be returned, the query must return exactly the first N rows unless fewer than N rows
qualify, in which case all rows must be returned. There are four permissible ways of satisfying this requirement:

1 Vendor-specific control statements supported by a test sporsor i n t e rimterfacé mag belisgd
(e.g., SET ROWCOUNT n) to limit the number of rosesurned.

91 Control statements recognized by the implementatpmtific layer (see Clauge2.4) and used to control a
loop which fetches the rowsay be used to limit the number of rows returned (e.g., while rowcount <= n).

1 Vendorspecific SQLsyntax may be added to the SELECT statement of a query template to limit the
number of rowseturned (e.g., SELECT FIRST n). This syntax is not classified as a minor query
modification $nce it completes the futional requirements of the functional query definitand there is
no standardized syntax defined. In all other respects, the query must satisfy the requirements of Clause
4.1.2 The syntax added must deal solely with the size of the answandahust not make any additional
explicit reference, for example, to tahlé@xices, or access paths.

TPC Benc h m&tankdEd SpeSification, Version7d) Page42 of 137

4.2.5
4251

425.2

4253

4.2.6
4.2.6.1

4.2.6.2

1 Enclosingthe outer most SQL statement (or statements in case of iterative OLAP queries) with a select
clause and a row limiting predicate. For example, if Q is the original query text. Then the modification
would be: SELECT * FROM (Q) where rownum<=n. This syis not classified as a minor query
modification $nce it completes the functional requirements of the functional query defiaitidthere is no
standardizd syntax defined. In all other respects, the query must satisfy the requirements ofilduse
The syntax added must deal solely with the size of the answeamnsetust not make anyditional explicit
reference, for example, to tablé@sdices, or access paths.

A test sponsomust select one of these methods and use it consistently for all the queries that require that a
specified number of rows be refed.

Extract Query Modifications

Some queries return large result sets. These queries correspond to the queries describedlid &ahsse

that produce large result sets for extraction; the results e gaved for later analysis. The benchmark allows
for alternative methods for a DBMS to extract these result rows to files in addition to the normal method of
processing them through a SQL fratd tool and using the froend tool to output the rows tdfie. If a

query for any stream returns 10,000 or more result rows, the vendor may extract the rows for that query in all
streams to files using one of the following permitted vergpmrcific extraction tools or methods:

1 Vendorspecific SQLsyntax may be added to the SELECT statement of a query template to redirect the
rows returned to a file. For exampl e, AiUnl oad to

1 Vendorspecific control statements supported by a test spérnsor i n tSQL irterfacé mag be used. For
example,

set output _file = O6outputfiled
select cl1, c2¢;
unset output_file;

1 Control statements recognized by the implementatpmtific layer (see Clauge2.4) and used to invoke an
extraction tool or method.

If one of these alternative extract options is used, the output shall be formatted as delimitedwaidftxed
ASCII text.

If one of these alternative extract options is used, they must neefelldwing conditions:

A test sponsomay select only one of the options4r2.5.1 That method must be used consistently for all the
queries that are eligible as extract queries.

9 If the extaction syntax modifies the query SQL, in all other respects the query must satisfy the
requirements of Clausel.2 The syntax added must deal solely with the extraction tool or medhibd
must not make any additional explicit reference, for example, to tabtkses, or access paths.

i The test sponsor must demonstrate that the file names used, and the extract facility itself, does not provide
hints or optimizations in the DBS such that the query has additional performance gains beyond any
benefits from accelerating the extraction of rows.

The tool or method used must meet all ACID requirements for the queries used in combination with the tool or
method.

Query Variants

A Query Variant is an alternate query template, which has been created to allow a vendor to overcome specific
functional barriers or product deficiencies that could not be address by minor query modifications.

Approval of any new query variant is required ptimuusing such variant to produce compliant TPE results.
The approval process is defined Clads27.

TPC Benc h m&tankdEd SpeSification, Version7d) Page43of 137

4.2.6.3

4.2.7
42.7.1

42.7.2

4.2.7.3

4.2.7.4

4.2.7.5

4.2.8

4238.1
4.2.8.2

4.2.8.3
4.2.8.4

4.2.9
4.29.1

Query variants that have already been approved are summarized in Appendix C.

Comment: Since the soft appendix is ugted each time a new variant is approved, test sponsors should
obtain the latest version of this appendix prior to implementing the benchmark. See App€adh&et
Requirementsfor more information)

Query Variamn Approval

New query variants will be considered for approval if they meet one of the following criteria:

a) The vendor requesting the variant cannot successfully run the executable query text against the
qualification database using the functional queryrdiééin or an approved variant even after applying
appropriate minor query modifications as per Clatige3

b) The proposed variant contains new or enhanced SQL syntax, relevant to the benchmark, which is defined in
an Approved Committee Draft of a new ISO SQL standard.

¢) The variant contains syntax that brings the proposed variant closer to adherence to an ISO SQL standard.

d) The proposed variant contains minor syntax differences that have a straightforward mappin§@_ISO
syntax used in the functional query definition and offers functionality substantially similar to the ISO SQL
standard.

To be approved, a proposed variant should have the following properties. Not all of the properties are

specifically required. Rathgthe cumulative weight of each property satisfied by the proposed variant will be

the determining factor in approving the variant.

a) Variant is syntactic only, seeking functional compatibility and not performance gain.

b) Variant is minimal and restricted torecting a missing functionality.

¢) Variant is based on knowledge of the business question rather than on knowledge of the system under test
(SUT) or knowledge of specific data values in the test database.

d) Variant has broad applicability among different ders.

e) Variant is non procedural.

f) Variant is an approved 1SO SQL syntax to implement the functional query definition.

g) Variant is sponsored by a vendor who can implement it and who intends on using it in an upcoming
implementation of the benchmark.

To be appoved, the proposed variant shall conform to the implementation guidelines defined in4-2a8se
and the coding standards defined in Clau2eQ

Approval of proposed quewrariants will be at the sole discretion of the TBE subcommittee, subject to TPC
policy.

All proposed query variants that are submitted for approval will be recorded, along with a rationale describing
why they were or were not approved.

Variant Implematation Guidelines

When a proposed query variant includes the creation of g thbldatatypeshall conform to Clausg.2.2

When a proposed query variant includes the creation of a&ngty (e.g., cursor, viewor tablg the entity
name shall ensure that newly created entities do not interfere with other query sessions and are not shared
between multiple query sessions.

Any entity created within a proposedegy variant must also be deleted within that variant.

If CREATE TABLE statements are used within a proposed query variant, they may include a tablespace
reference (e.g., IN <tablespacename>). A single tablespace must be used for all tables createpraihsed
query variant

Coding Style

Implementers may code the executable query text in any desired coding style, including
a) use of line breaks, tabs or white space
b) choice of upper or lower case text

TPC Benc h m&tankdEd SpeSification, Version7d) Page44 of 137

4.29.2 The coding style used shall have no impatthe performance of the system under test, and must be
consistently applied throughout the entire query set.

Comment: The auditor may require proof that the coding style does not affect performance.

TPC Benc h m&tankdEd SpeSification, Version7d) Page45 of 137

4.3 Substitution Parameter Generation

4.3.1 Each query has one or morebstitution parameters. Dsqgen must be used to generate executable query texts for the
guery streams. In order to generate the required number of query streams, dsqgen must be used with the
RNGSEED, INPUT and STREAMS options. The value for the RNGSEEDrpRSEED>, is selected as the
timestamp of the end of the database load {imad End Timegxpressed in the format mmddhhmmsss as defined
in Clause7.4.3.8 The value for the STREAMS option, <Sstwo times the number of strean®, to be executed
during eachrhroughput TestS=2* S;). The value of the INPUT option, <input.txt>, is a file containing the location
of all 99 query templates in numerical order.

Comment: RNGSEED guarantees that the query substitysemameter values are not known prior to running
the power and throughput tests. Called with a value of <S> for the STREAMS parameter, dsqgen getlerates S
files, named query_0.sql through query_[S].sql. Héetcontains a different permutation of th@ §ueries.

4.3.2 Query_0.sql is the sequence of queries to be executed during the Power Test; files query_1.sql through
query_[S].sql are the sequences of queries to be executed dbsrigstThroughput Testand files
query_[$+1].sql through query_[2*$.sql are the sequences of queries to be executed dhergpcond
Throughput Test

Comment: The substitution parameter values for the qualification queries are proviti@d®it.1Appendix
B:. They must be manually inged into the query templates.

TPC Benc h m&tankdEd SpeSification, Version7d) Page46 of 137

5.1
5.11

5.1.2

5.1.3

514

515

5.1.6

51.7

5.2
5.2.1

5 Data Maintenance

Implementation Requirements and Definitions

Data maintenance operations are performed as part of the benchmark execution. These operations consist of
processing refrestunsThe total number of refrestinsin the benchmark equals the number of query streams

in oneThroughput TestAll data maintenance functions defined in Clabisare executed in each refrasim.

Each refreshun has its own data set as genedaby dsdgen and must be used in the order generated by dsdgen.
Data maintenance operations exe@dparately frongueries. Refrestunsdo not overlap; at most one refresh
runis running at any time.

Each refreslunincludes all data maintenance fuocts defined in Clause 3 on the refresh data defined in
Clauseb.2 All data maintenance functions need to have finishedfreshrunn before any data maintenance
function can commenda refreshrun n+1 (see Claus&.4.8.9.

Data maintenance functions can be decomposed or combined into any humber of d@izdiensand the
execution order of the data maintenance functions can be frezdgrclas long as the following conditions are
met. Particularly, the functions in each refreshmay be run sequentially or in parallel.

a) Data Accessibilityproperties (See Clause 6.1);

b) All primary/foreign key relationships must be preserved regardfeshether they have been enforced by
constraint (see Claug5.4. This does not imply that referential integrity constraints must be defined
explicitly.

c) Atime-stamped output message is sent when the data maintenance {sréioessed.

Comment: The intent of this clause is to maintain primary and foreign key referential integrity.

Comment: Implementers can assume that if all DM operations complete successfully that the PK/FK
relationship is preserved. Any exceptions are bugs that needikethén the spec.

All existing and enabled EADS affected by any data maintenance operation must be updated within those data
maintenance operations. All updates performed by the refresh process must be visible to queries that start after
the updates areompleted

The data maintenance functions must be implemented in SQL or procedural SQL. The proper implementation
of the data maintenance function must be validated by the auditor who may request additional tests to ascertain
that the data maintenance @tions were implemented and executed in accordance with the benchmark
requirements.

Comment: Procedural SQL can be SQL embedded in other programs, interpreted or compiled.

Thestaging areais an optional collection of database objects (e.g. tables, ingdeirevs, etc.) used to

implement the data maintenance functions. Database objects created in the staging area can only be used during
execution of the data maintenance phase and cannot be used during any other phase of the benchmark. Any
object createéh the staging area needs to be disclosed in the FDR.

Any disk storage used for the staging area must be priced. Any mapping or virtualization of disk storage must
be disclosed.

Refresh Data

The refresh data consists of a series of refresh datagetsbne r ed 1, 2, 3én. <n> is i
streams used in thEhroughput Test of the benchmark. Each refresh data set consists of <N> flat files. The
content of the flat files can be used to populate the source schema, defined in Appétaliveser, populating

the source schema is not mandated. The flat files generated for each refresh data set and their corresponding
source schema tables are denoted in the following table.

TPC Benc h m&tankdEd SpeSification, Version7d) Page47 of 137

Table 5-1 Flat File to Source Schema Table Mapping and Flat File Size at Scale Factor 1

Flat File Name Approximate Size at SF1 Source Schema Table Name
Bytes Number of rows
s_catalog_order.dat 116505 682 s_catalog_order
s_catalog_order_lineitem.dat 592735 6138 s_catalogorder_lineitem
s_catalog_returns.dat 112182 578 s_catalog_returns
s_inventory.dat 26764259 540000 s_inventory
s_purchase.dat 142552 1022 s_purchase
s_purchase_lineitem.dat 1312480 12264 s_purchase_lineitem
s_store_returns.dat 159306 1235 S_store_retuns
s_web_order.dat 43458 256 s_web_order
s_web_order_lineitem.dat 324160 3072 s_web_order_lineitem
s_web_returns.dat 42165 295 s_web_returns
inventory delete 66 3 inventory delete
delete 66 3 delete

1 The number of rows are correct to within 0.001%. Howgtve number of bytes can vary from refresh set to
refresh set due to NULL values.

TPC Benc h m&tankdEd SpeSification, Version7d) Page48of 137

5.2.2

5.2.3

524

525

Table 5-2 Approximate Number of rows in the update sets

Source Approximate Number of Rovfsat Scale Factors:
Schema Table Name
HEFIENEE 1 1000 3000 10000 30000 100000
(with .dat extension)
delete_1.dat 3 3 3 3 3 3
inventory_delete_1.dat 3 3 3 3 3 3
s_catalog_order_1.dat 682 681062 2043188 6810626 20431878 68106258
s_catalog_order_lineitem_1.da| 6138 6129558| 18388692 61295634| 183886902 612956322
s_catalog_returns_1.dat 595 612485 1838772 6128994 18382810 61291609
s_inventory_1.dat 270000| 180000 | 23760000 30150000 37422000 90360000
s_purchase_1.dat 1022 1021594 3064780 10215938 30647816 102159386
s_purchase_lineitem_1.dat 12264 | 12259128| 36777360 122591256| 367773792| 1225912632
s_store_returns_1.dat 1200 1226054 3676450 12259852 36777217 1226M683
s_web_order_1.dat 256 255398 766196 2553984 7661954 25539846
s_web_order_lineitem_1.dat 3072 3064776| 9194352 30647808| 91943448 306478152
s_web_returns_1.dat 320 306222 918594 3061569 9190618 30642220
Table 5-3 Approximate size of update data sets in bytes
Source Schema Table Name Approximate Number of Bytg‘at Scale Factors:
Flat File Name
(with .dat extension) 1 1000 3000 10000 30000 100000
s_catalog_order 116505 118319211 356209093| 1189890226| 3582266543 11966927381
s_catalog_order_lineitem 592735 613833353| 1853028767 6200096417| 18729687588 62665689954
s_catalog_returns 112182 120659364 | 363309171| 1212531153| 3648947224] 12186641092
s_inventory 26764259 1784226065| 2355173608| 2988571049| 3709394541 4478391128
s_purchase 142552 145457806 438594877 | 1464772384| 41069025492 14749907338
s_purchase_lineitem 1312480 1347883261 4070341609| 13601008735| 41069025492| 137232918564
s_store_returns 159306 165441528 501145568| 1677710639| 5088325652 17029150799
s_web_order 43458 44295571 133116152 445523894 | 1338776975 4480621920
s_web_order_lineitem 324160 332423806 999959825| 3354924415| 10091449245 33855757519
s_web_page 482 24016 28815 31982 36801 40013
s_web_returns 42165 44803099 134594520 450275312 1353093091 4533145920
inventory_delete 66 66 66 66 66 66
delete 66 66 66 66 66 66

The number of rows present in each refrestlasscale factor 1 for each of the flat files is summarizékchivle
51

The refresh datset of each data maintenance function must be generateddsdiggn The execution of
dsdgenis not timed. The output afsdgenis a text file. The storage to hold the refresh data sets must be part
of the priced configuration.

The refresh data set phaced by dsdgen can be modified in the following way: The output file for each table of
the refresh data set can be split into n files where each file contains approximately 1/n of the total number of
rows of the original output file. The order of thevsin the original output file must be preserved, such that the

concatenation of all n files is identical to the original file.

Reading the refresh data is a timed part of the data maintenance process. The data set for a specific refresh
must be loade and timed as part of the execution of the refrash The loading of data must be performed via
generic processes inherent to ttada processing systeon by the loader utility the database software provides
and supports for general data loadingis kxplicitly prohibited to use a loader tool that has been specifically
developed for TPMS.

2 The number of rows are correct to within 0.001%.

3 The number of bytes can vary from refresh set to refresh set due to NULL values.

TPC Benc h m&tankdEd SpeSification, Version7d) Page49 of 137

5.3 Data Maintenance Functions

5.3.1 Data maintenance functions perform insertand delete operations that are defined in pseudo code. Depending on
which operation they porm and on which type of table, they are categorized as Method1 through Blethod
They are:

Method1: fact insert data maintenance
Method?2: fact delete data maintenance
Method3: inventory delete data maintenance

5.3.2 The following table lists all data maertance functions, their type of operation and target table. The number of
rows in the views mudie equal to the rowcounts in the source schema tables listed in column 6 of-#able 5
The rowcounts of the source schema tables are listEdhle5-2.

Table 5-4 Data Maintenance Function Summary

Data Data Maintenance Function | Type of Operation | View Name | Target Table Source Schema Table

Maintenance

Function ID

1 LF_CR(Clause5.3.11.6 Method1 crv catalog_returns s_catalog_returns

2 LF_CYClause5.3.11.9 Method1 csv catalog_sales s_catalog_sales

3 LF_I(Clauseb.3.11.7 Method1 iv inventory s_inventory

4 LF_SRClause5.3.11.2 Method1 srv store_returns s_store_returns

5 LF_SYClause5.3.11.) Method1 SSV store_sales s_purchase_lineitem

6 LF_WR(Clause5.3.11.9 Method1 Wrv web_returns s_web_returns

7 LF_WSClause5.3.11.3 Method1 WSV web_sales s_web_oder_lineitem

8 DF_CSClause5.3.11.10 Method2 - catalog_sales [S], catalog_returns [R -

9 DF_SSClause5.3.11.9 Method2 - store_sales [S], store_returns [R] -

10 DF WSClauses.3.11.1) Method?2 - web_sales [S], web_returns [R] -

11 DF_I(Clause5.3.11.12 Method3 - Inventory [I] -

5.3.3 Data maintenance function methbdeads rows from a view V (see column View Name of table in Clause
5.3.2 and insert rows into a data warehouse table T. Both V and T are defined as part of the data maintenance
function. T is created as part bEtinitial load of the data warehouse. V is a logical table that does not need to
be instantiated.

5.34 The primary key of V is defined in the data maintenance function. Each data maintenance function contains a
table with column mapping between its view Mdts data warehouse table T. The primary key of V is
denoted in bold letters on the left side of this mapping table{alje 55).

5.35 Business keys are the primary keys from the source schema. Business keys are denoted in bold letters on the
right sideof the mapping table for the data maintenance function Talge5-5).

5.3.6 Generating a new primary key value for a dimension table is defined as generating the next largest value in the
dense sequence of the tabl e 6thelapgest cureent primirgkey valzelisxe s .
then the next value is x+1.

5.3.7 Method1: Fact Table Load

for every row v in view V corresponding to fact table F
get row v into local variable Iv
for every type 1 business key column bkc in v
get row d from dimension table D corresponding to bkc
where the business keys of v and d are equal
update bkc of Iv with surrogate key of d
end for
for every type 2 busi ness key column bkc in v
get row d from dimension table D corresponding to bkc
where the business keys of v and d are equal and

TPC Benc h m&tankdEd SpeSification, Version7d) Page50 of 137

rec_end_date is NULL
update bkc of Iv with surrogate key of d
end for
insert lv into F

end for

5.3.8 Method?2: Sales and Returns Fact Table Delete

Delete rows from R with corresponding rows in S

where d_date between Datel and Date2
Delete rows from S

where d_date between Datel and Date2

Comment: D_date is a column of the date_dim dimension. D_date has to be obtained by joining to the
date_dim dimension on sales date surrogate key. The sales date surrogate key for thessiore sa
ss_sold_date_sk, for catalog it is cs_sold_date sk and for web sales it is ws_sold. date sk

5.3.9 Method3: Inventory Fact Table Delete
Delete rows from | where d_date between Datel and Date2

Comment: D_date is a column of the date_dim dimension. D_date hasdbthined by joining to the
date_dim dimension on inv_date_sk.

5.3.10 Each data maintenance function inserting or updating rows in dimension and fact tables is defined by the
following components:

a) Descriptor, indicating the name of the data maintenance funatiohe form of DM_<abbreviation of data
warehouse table> for dimensions and LF_<abbreviation of the data warehouse fact table> for fact tables.
The extension indicates the data warehouse table that is populated with this data maintenance function.

b) Thedata maintenance methodlescribes the pseudo code of the data maintenance function.

c) A SQL view V describing which tables of the source schema need to be joined to obtain the correct rows to
be loaded.

d) Thecolumn mapping defining which source schema columnaprio which data warehouse columns;

5.3.11 Each data maintenance function deleting rows from fact tables is defined by the following components:

a) Descriptor, indicating the name of the data maintenance function in the form of DF_<abbreviation of data
warehouse fadable>. The extension indicates the data warehouse fact table from which rows are deleted.

b) Tables:SandR, orl in case of inventory

c) Two datesDatelandDate2

d) Thedata maintenance methodndicates how data is deleted

Comment: In the flat files generated bydigen for data maintenance there are 2 files which relate to
deletes. One flat file (delete_<n>.dat) associated with deletes applies to sales and returns for
store, web and catalog where <n> denotes the set number, defined in Ela@se The
second flat file (inventory_delete_<n>.dat) applies to inventory only where <n> denotes the
set number,d efined in Claugel.?. In each delete flat file there are 3 setstaft and end
dates for the delete function. Each of the 3 sets of dates must be applied.

5.3.11.1 LF_SS

TPC Benc h m&tankdEd SpeSification, Version7d) Pageb1 of 137

CREATE view ssv as

SELECT d_date_sk ss_sold_date_sk,
t_time_sk ss_sold_time_sk,
i_item_sk ss_item_sk,
c_customer_sk ss_customer_s k,
c_current_cdemo_sk ss_cdemo_sk,
c_current_hdemo_sk ss_hdemo_sk,
c_current_addr_sk ss_addr_sk,
s_store_sk ss_store_sk,
p_promo_sk ss_promo_sk,
purc_purchase_id ss_ticket_number,
plin_quantity ss _quantity,
i_wholesale_cost ss_wholesale_cost,
i_current_price ss_list_price,
plin_sale_price ss_sales_price,
(i_current_price - plin_sale_price)*plin_quantity ss_ext_discount_amt,
plin_sale_price * plin_quantity ss_ ext_sales_price,
i_wholesale_cost * plin_quantity ss_ext_wholesale_cost,
i_current_price * plin_quantity ss_ext_list_price,
i_current_price * s_tax_precentage ss_ext_tax,
plin_coupon_amt ss_coupon_amt,

(plin_sale_ price * plin_quantity) - plin_coupon_amt ss_net_paid,
((plin_sale_price * plin_quantity) - plin_coupon_amt)*(1+s_tax_precentage) ss_net_paid_inc_tax,
((plin_sale_price * plin_quantity) - plin_coupon_amt) - (plin_quantity*i_wholesale_cost)

ss_net_pr ofit
FROM s_purchase
LEFT OUTER JOIN customer ON (purc_customer_id = c¢_customer_id)
LEFT OUTER JOIN store ON (purc_store_id = s_store_id)
LEFT OUTER JOIN date_dim ON (cast(purc_purchase_date as date) = d_date)
LEFT OUTER JOIN time_dim ON (PURC_PURCHAS E_TIME =t_time)
JOIN s_purchase_lineitem ON (purc_purchase_id = plin_purchase_id)
LEFT OUTER JOIN promotion ON plin_promotion_id = p_promo_id
LEFT OUTER JOIN item ON plin_item_id = i_item_id
WHERE purc_purchase_id = plin_purchase_id

AND i_rec_end_da teis NULL

AND s_rec_end_date is NULL;

Table 55: Column mapping for the store_sales fact table

Source Schema Column Target Column
SS_SOLD_DATE_SK SS_SOLD_DATE_SK
SS_SOLD_TIME_SK SS_SOLD_TIME_SK
SS_ITEM_SK SS_ITEM_SK
SS_CUSTOMER_SK SS_CUSTOMER_SK
SS_CDEMO_SK SS_CDEMO_SK
SS_HDEMO_SK SS_HDEMO_SK
SS_ADDR_SK SS_ADDR_SK
SS_STORE_SK SS_STORE_SK
SS_PROMO_SK SS_PROMO_SK
SS_TICKET_NUMBER SS_TICKET_NUMBER
SS_QUANTITY SS_QUANTITY
SS_WHOLESALE_COST SS_WHOLESALE_COST
SS_LIST PRICE SS_LIST PRICE
SS_SALBS_PRICE SS_SALES PRICE
SS_EXT_DISCOUNT AMT SS_EXT_DISCOUNT _AMT
SS_EXT_SALES_PRICE SS_EXT_SALES PRICE
SS_EXT_WHOLESALE_COST SS_EXT_WHOLESALE_COST
SS_EXT LIST PRICE SS_EXT _LIST PRICE
SS_EXT_TAX SS_EXT_TAX
SS_COUPON_AMT SS_COUPON_AMT
SS_NET_PAID SS_NET PAID
SS_NET_PAID_INC_TAX SS_NET_PAID_INC_TAX
SS NET_PROFIT SS_NET _PROFIT

53.11.2 LF_SR

TPC Bench m&tankldtd SpeSification, Versiori72

Page52 of 137

CREATE view srv as
SELECT d_date_sk sr_returned_date_sk
t_time_sk sr_return_time_sk
Ji_item_sk sr_item_sk
,C_customer_sk sr_customer_sk
,c_current_¢ demo_sk sr_cdemo_sk
,c_current_hdemo_sk sr_hdemo_sk
,c_current_addr_sk sr_addr_sk
,S_store_sk sr_store_sk
,I_reason_sk sr_reason_sk
,sret_ticket_number sr_ticket_number
,sret_return_qty sr_return_quantity
,Sret_ret urn_amt sr_return_amt
,sret_return_tax sr_return_tax
,sret_return_amt + sret_return_tax sr_return_amt_inc_tax
,sret_return_fee sr_fee
,sret_return_ship_cost sr_return_ship_cost
,sret_refunded_cash sr_refunded_cash
,sret_ reversed_charge sr_reversed_charge
,sret_store_credit sr_store_credit
,sret_return_amt+sret_return_tax+sret_return_fee
- sret_refunded_cash - sret_reversed_charge
FROM s_store_returns
LEFT OUTER JOIN date_dim
ON (cast(sret_return_date as date) = d_date)
LEFT OUTER JOIN time_dim
ON ((cast(substr(sret_return_time,1,2) AS integer)*3600
+cast(substr(sret_return_time,4,2) AS integer)*60
+cast(substr(sret_return_time,7,2) AS integer)) = t_time)
LEFT OUTER JOIN item ON (sret_item_id = i_item_id)
LEFT OUTER JOIN customer ON (sret_customer_id = c_customer_id)
LEFT OUTER JOIN store ON (sret_store_id = s_store_id)
LEFT OUTER JOIN reason ON (sret_reason_id = r_reason_id)
WHERE i_rec_end_date IS NULL
AND s_rec_end_date IS NULL;

- sret_store_credit sr_net_loss

Table 56: Column mapping for the store_returns fact table

Source Schema Column

Target Column

SR_RETURNED_DATE_SK

SR_RETURNED DATE_SK

SR_RETURN_TIME_SK

SR_RETURN_TIME_SK

SR_ITEM_SK

SR_ITEM_SK

SR_CUSTOMER_SK

SR_CUSTOMER_SK

SR_CDEMO_SK

SR_CDEMO_SK

SR_HDEMO_SK

SR_HDEMO_SK

SR_ADDR_SK

SR_ADDR_SK

SR_STORE_SK

SR_STORE_SK

SR_REASON_SK

SR_REASON_SK

SR_TICKET_NUMBER

SR_TICKET_NUMBER

SR_RETURN_QUANTITY

SR_RETURN_QUANTITY

SR_RETURN_AMT

SR_RETURN_AMT

SR_RETURN_TAX

SR_RETURN_TAX

SR_RETURN_AMT_INC_TAX

SR_RETURN_AMT_INC_TAX

SR_FEE

SR_FEE

SR_RETURN_SHIP_COST

SR_RETURN_SHIP_COST

SR_REFUNDED_CASH

SR_REFUNDED_CASH

SR_REVERSED_CHARGE

SR_REVERSED_CHARGE

SR_STORE_CREDIT

SR_STORE_CREDIT

SR_NET_LOSS

SR_NET_LOSS

5.3.11.3

LF_ WS

TPC Bench m&tankldtd SpeSification, Versiori72

Page53 of 137

CREATE VIEW wsv AS
SELECT di1.d_date_sk ws_sold_date_sk,

t_time_sk ws_sold_time_sk,

d2.d_date_sk ws_ship_date_sk,

i_item_sk ws_item_sk,

cl.c_customer_sk ws_hill_customer_sk,
cl.c_current_cdemo_sk ws_bill_cdemo_sk,
cl. c_current_hdemo_sk ws_bill_hdemo_sk,
cl.c_current_addr_sk ws_bill_addr_sk,
c2.c_customer_sk ws_ship_customer_sk,
c2.c_current_cdemo_sk ws_ship_cdemo_sk,
c2.c_current_hdemo_sk ws_ship_hdemo_sk,
c2.c_current_addr_sk ws _ship_addr_sk,
wp_web_page_sk ws_web_page_sk,
web_site_sk ws_web_site_sk,
sm_ship_mode_sk ws_ship_mode_sk,
w_warehouse_sk ws_warehouse_sk,
p_promo_sk ws_promo_sk,

word_order_id ws_order_number,

wlin_ quantity ws_quantity,
i_wholesale_cost ws_wholesale_cost,
i_current_price ws_list_price,
wlin_sales_price ws_sales_price,
(i_current_price
wlin_sales_price * wli

i_current_price * wlin_quantity ws_ext_list_price,
i_current_price * web_tax_percentage ws_ext_tax,
wlin_coupon_amt ws_coupon_amt,

wlin_ship_cost * wlin_quantity WS_EXT_SHIP_COST,
(wlin_sales_price * wlin_quantity)
((wlin_sales_price * wlin_guantity)
((wlin_sales_pri ce * wlin_quantity)

- wlin_coupon_amt)

WS_NET_PAID_INC_SHIP,
(wlin_sales_price * wlin_quantity)

- wlin_sales_price)*wlin_quantity ws_ext_discount_amt,
n_quantity ws_ext_sales_price,
i_wholesale_cost * wlin_quantity ws_ext_wholesale_cost,

- wlin_coupon_amt ws_net_paid,
- wlin_coupon_amt)*(1+web_tax_percentage) ws_net_paid_inc_tax,
- (wlin_qguantity*i_wholesale_cost)

- wlin_coupon_amt + (wlin_ship_cost * wlin_quantity)

+ i_current_price * web_tax_percentage WS_NET_PAID_INC_SHIP_TA X,

((wlin_sales_price * wlin_guantity)
WS_NET_PROFIT
FROM s_web_order

- wlin_coupon_amt)

LEFT OUTER JOIN date_dim d1 ON (cast(word_order_date as date) = d1.d_date)

LEFT OUTER JOIN time_dim ON (word_order_time =

t_time)

LEFT OUTER JOIN customer c¢1 ON (word_bill_customer_id = c1.c_customer_id)

LEFT OUTER JOIN customer c2 ON (word_ship_customer_id = c2.c_customer_id)

LEFT OUTER JOIN web_site ON (word_web_site_id = web_site_id AND web_rec_end_date IS NULL)
LEFT OUTER JOIN ship_mode ON (word_ship_mode_id = sm_ship_mode_id)

JOIN s_web_order_lineitem ON (word_order_id = wlin_order_id)
LEFT OUTER JOIN date_dim d2 ON (cast(wlin_ship_date as date) = d2.d_date)

LEFT OUTER JOIN item ON (wlin_item_id = i_item_id AND i_rec_end_
LEFT OUTER JOIN web_page ON (wlin_web_page_id = wp_web_page_id AND wp_rec_end_date IS NULL)

date IS NULL)

LEFT OUTER JOIN warehouse ON (wlin_warehouse_id = w_warehouse_id)
LEFT OUTER JOIN promotion ON (wlin_promotion_id = p_promo_id);

Table 57: Column mapping for the web_sales fact table

- (i_wholesale_cost * wlin_quantity)

Source Schema Column

Target Column

WS_SOLD_DATE_SK

WS_SOLD_DATE_SK

WS_SOLD_TIME_SK

WS _SOLD_TIME_SK

WS_SHIP_DATE_SK

WS_SHIP_DATE_SK

WS_ITEM_SK

WS_ITEM_SK

WS _BILL_CUSTOMER_SK

WS_BILL_CUSTOMER_SK

WS _BILL_ CDEMO_SK

WS_BILL_CDEMO_SK

WS_BILL_ HDEMO_SK

WS_BILL_ HDEMO_SK

WS_BILL_ADDR_SK

WS_BILL_ADDR_SK

WS_SHIP_CUSTOMER_SK

WS_SHIP_CUSTOMER_SK

WS_SHIP_CDEMO_SK

WS_SHIP_CDEMO_SK

WS_SHIP_HDEMO_SK

WS_SHIP_HDEMO_SK

WS_SHIP_ADDR_SK

WS_SHIP_ADDR_SK

WS_WEB_PAGE_SK

WS_WEB_PAGE_SK

WS_WEB_SITE_SK

WS_WEB_SITE_SK

TPC Bench m&tankldtd SpeSification, Versiori72

Pageb4 of 137

53.114

Source Schema Column

Target Column

WS_SHIP_MODE_SK

WS_SHIP_MODE_SK

WS_WAREHOUSE_SK

WS_WAREHOUSE_SK

WS_PROMO_SK

WS_PROMO_SK

WS_ORDER_NUMBER

WS_ORDER_NUMBER

WS_QUANTITY

WS_QUANTITY

WS_WHOLESALE_COST

WS_WHOLESALE_COST

WS_LIST_PRICE

WS_LIST_PRICE

WS_SALES PRICE

WS_SALES_PRICE

WS_EXT_DISCOUNT_AMT

WS_EXT_DISCOUNT_AMT

WS_EXT_SALES_PRICE

WS_EXT_SALES_PRICE

WS_EXT_WHOLESALE_COST

WS_EXT_WHOLESALE_COST

WS_EXT_LIST PRICE

WS_EXT_LIST PRICE

WS_EXT_TAX

WS_EXT_TAX

WS_COUPON_AMT

WS_COUPON_AMT

WS_EXT_SHIP_COST

WS_EXT_SHIP_COST

WS_NET_PAID

WS_NET_PAID

WS_NET_PAID_INC_TAX

WS_NET_PAID_INC_TAX

WS_NET_PAID_INC_SHIP

WS_NET_PAID_INC_SHIP

WS_NET_PAID_INC_SHIP_TAX

WS_NET_PAID_INC_SHIP_TAX

WS_NET_PROFIT

WS_NET_PROFIT

LF_WR

TPC Bench m&tankldtd SpeSification, Versiori72

Pageb5 of 137

CREATE VIEW wrv AS

SELECT d_date_sk wr_return_ date_sk
Jt_time_sk wr_return_time_sk
Ji_item_sk wr_item_sk
,cl.c_customer_sk wr_refunded_customer_sk
,cl.c_current_cdemo_sk wr_refunded_cdemo_sk
,cl.c_current_hdemo_sk wr_refunded_hdemo_sk
,cl.c_current_addr_sk wr_refund
,C2.c_customer_sk wr_returning_customer_sk
,c2.c_current_cdemo_sk wr_returning_cdemo_sk
,c2.c_current_hdemo_sk wr_returning_hdemo_sk
,c2.c_current_addr_sk wr_returing_addr_sk
,wp_web_page_sk wr_web_page_sk
;I _reason_sk wr_reason_sk
,wret_order_id wr_order_number
wret_return_qty wr_return_quantity
,wret_return_amt wr_return_amt
,wret_return_tax wr_return_tax

ed_addr_sk

,wret_return_amt + wret_return_tax AS wr_return_amt_inc_tax

wret_r eturn_fee wr_fee

,wret_return_ship_cost wr_return_ship_cost

,wret_refunded_cash wr_refunded_cash

,wret_reversed_charge wr_reversed_charge

,wret_account_credit wr_account_credit

,wret_return_amt+wret_return_tax+wret_return_fee
- wret_refunded_cash - wret_reversed_charge

- wret_account_credit wr_net_loss

FROM s_web_returns LEFT OUTER JOIN date_dim ON (cast(wret_return_date as date) = d_date)
LEFT OUTER JOIN time_dim ON ((CAST(SUBSTR(wret_return_time,1,2) AS integer)*3600

+CAST(SUBSTR(wret_return_time,4,2) AS integer)*60+CAST(SUBSTR(wret_return_time,7,2) AS integer))=t_time)

LEFT OUTER JOIN item ON (wret_item_id = i_item_id)

LEFT OUTER JOIN customer c1 ON (wret_return_customer_id = c1.c_customer_id)

LEFT OUTER JOIN customer c2 ON

(wret_refund_customer_id = c2.c_customer_id)
LEFT OUTER JOIN reason ON (wret_reason_id = r_reason_id)

LEFT OUTER JOIN web_page ON (wret_web_page_id = WP_WEB_PAGE_id)
WHERE i_rec_end_date IS NULL AND wp_rec_end_date IS NULL;

Table: 5-8: Column mapping for the web_returns fact table

Source Schema Column

Target Column

WR_RETURNED_DATE_SK

WR_RETURNED_DATE_SK

WR_RETURNED_TIME_SK

WR_RETURNED_TIME_SK

WR_SHIP_DATE_SK

WR_SHIP_DATE_SK

WR_ITEM_SK

WR_ITEM_SK

WR_REFUNDED_CUSTOMER_SK

WR_REFUNDED_CUSTOMER_SK

WR_REFUNDED_CDEMO_SK

WR_REFUNDED_CDEMO_SK

WR_REFUNDED_HDEMO_SK

WR_REFUNDED_HDEMO_SK

WR_REFUNDED_ADDR_SK

WR_REFUNDED_ADDR_SK

WR_RETURNING_CUSTOMER_SK

WR_RETURNING_CUSTOMER_SK

WR_RETURNING_CDEMO_SK

WR_RETURNING_CDEMO_SK

WR_RETURNING_HDEMO_SK

WR_RETURNING_HDBMO_SK

WR_RETURNING_ADDR_SK

WR_RETURNING_ADDR_SK

WR_WEB_PAGE_SK

WR_WEB_PAGE_SK

WR_SHIP_MODE_SK

WR_SHIP_MODE_SK

WR_REASON_SK

WR_REASON_SK

WR_WAREHOUSE_SK

WR_WAREHOUSE_SK

WR_ORDER_NUMBER

WR_ORDER_NUMBER

WR_RETURN_QUANTITY

WR_RETURN_QUANTITY

WR_RETURN AMT

WR_RETURN_AMT

WR_RETURN_TAX

WR_RETURN_TAX

WR_RETURN_AMT_INC_TAX

WR_RETURN_AMT_INC_TAX

WR_FEE

WR_FEE

WR_RETURN_SHIP_COST

WR_RETURN_SHIP_COST

WR_REFUNDED_CASH

WR_REFUNDED_CASH

WR_REVERSED_CHARGE

WR_REVERSED_CHARGE

WR_ACCOUNT_CREDIT

WR_ACCOUNT_CREDT

WR_NET_LOSS

WR_NET_LOSS

5.3.11.5 LF_CS

TPC Bench m&tankldtd SpeSification, Versiori72

Page56 of 137

CREATE view csv as

SELECT d1.d_date_sk cs_sold_date_sk
,t_time_sk cs_sold_time_sk
,d2.d_date_sk cs_ship_date_sk
,cl.c_customer_sk cs_bill_customer_sk
,cl.c_current_cdemo_sk cs_bill_cdemo_sk
,cl.c_current_hdemo_sk cs_bill_hdemo_sk
,cl.c_current_addr_sk cs_bill_addr_sk
,c2.c_customer_sk cs_ship_customer_sk
,c2.c_current_cdemo_sk cs_ship_cdemo_sk
,c2.c_current_hdemo_sk cs_ship_hdemo_sk
,c2.c_current_addr_sk cs_shi p_addr_sk
,cc_call_center_sk cs_call_center_sk
,cp_catalog_page_sk cs_catalog_page_sk
,sm_ship_mode_sk cs_ship_mode_sk
,w_warehouse_sk cs_warehouse_sk
Ji_item_sk cs_item_sk
,p_promo_sk cs_promo_sk
,cord_order_id cs _order_number
,clin_quantity cs_quantity
,i_wholesale_cost cs_wholesale_cost
Ji_current_price cs_list_price
,clin_sales_price cs_sales_price
J(i_current_price - clin_sales_price)*clin_quantity cs_ext_discount_amt
,clin_sal es_price * clin_quantity cs_ext_sales_price
,i_wholesale_cost * clin_quantity cs_ext_wholesale_cost
Ji_current_price * clin_quantity CS_EXT_LIST_PRICE
Ji_current_price * cc_tax_percentage CS_EXT_TAX
,clin_coupon_amt cs_coupon_amt
,clin_ship_cost * clin_quantity CS_EXT_SHIP_COST

,(clin_sales_price * clin_quantity) - clin_coupon_amt cs_net_paid
,((clin_sales_price * clin_quantity) - clin_coupon_amt)*(1+cc_tax_percentage) cs_net_paid_inc_tax
,(clin_sales_price * cli n_quantity) - clin_coupon_amt + (clin_ship_cost * clin_quantity) CS_NET_PAID_INC_SHIP
,(clin_sales_price * clin_quantity) - clin_coupon_amt + (clin_ship_cost * clin_quantity)

+ i_current_price * cc_tax_percentage CS_NET_PAID_INC_SHIP_TAX
,((clin_sales_price * clin_quantity) - clin_coupon_amt) - (clin_quantity*i_wholesale_cost) cs_net_profit

FROM s_catalog_order
LEFT OUTER JOIN date_dim d1 ON
(cast(cord_order_date as date) = d1.d_date)
LEFT OUTER JOIN time_dim ON (cord_order_time = t_time)
LEFT OUTER JOIN customer c1 ON (cord_bill_customer_id = c1.c_customer_id)
LEFT OUTER JOIN customer c2 ON (cord_ship_customer_id = c2.c_customer_id)
LEFT OUTER JOIN call_center ON (cord_call_center_id = cc_call_center_id AND cc_rec_end_date IS NULL)
LEFT OUTER JOIN ship_mode ON (cord_ship_mode_id = sm_ship_mode_id)
JOIN s_catalog_order_lineitem ON (cord_order_id = clin_order_id)
LEFT OUTER JOIN date_dim d2 ON
(cast(clin_ship_date as date) = d2.d_date)
LEFT OUTER JOIN catalog_page ON
(clin_catalog_page_nu mber = cp_catalog_page_number and clin_catalog_number = cp_catalog_number)
LEFT OUTER JOIN warehouse ON (clin_warehouse_id = w_warehouse_id)
LEFT OUTER JOIN item ON (clin_item_id = i_item_id AND i_rec_end_date IS NULL)
LEFT OUTER JOIN promotion ON (clin_pr omotion_id = p_promo_id);

Table 59: Column mapping for the catalog_sales fact table

Source Schema Column Target Column
CS_SOLD_DATE_SK CS_SOLD_DATE_SK
CS_SOLD_TIME_SK CS_SOLD_TIME_SK
CS_SHIP_DATE_SK CS_SHIP_DATE_SK
CS_BILL_CUSTOMER_SK CS_BILL_CUSTOMER SK
CS _BILL_CDEMO_SK CS _BILL_CDEMO_SK
CS_BILL_HDEMO_SK CS_BILL_HDEMO_SK
CS _BILL ADDR_SK CS _BILL ADDR_SK
CS_SHIP_CUSTOMER_SK CS_SHIP_CUSTOMER_SK
CS_SHIP_CDEMO_SK CS_SHIP_CDEMO_SK
CS_SHIP_HDEMO_SK CS_SHIP_HDEMO_SK
CS_SHIP_ADDR_SK CS_SHIP_ADDR_SK
CS_CALL_CENTER_SK CS_CALL _CENTER_SK
CS_CATALOG_PAGE_SK CS_CATALOG_PAGE_SK
CS_SHIP_MODE_SK CS_SHIP_MODE_SK
CS_WAREHOUSE_SK CS_WAREHOUSE_SK
CS_ITEM_SK CS_ITEM_SK
CS_PROMO_SK CS_PROMO_SK
CS_ORDER_NUMBER CS_ORDER_NUMBER
CS_QUANTITY CS_QUANTITY

TPC Benc h m&tankdEd SpeSification, Version7d) Page57 of 137

53.11.6

Source Schema Column

Target Column

CS_WHOLESALE COST

CS_WHOLESALE_COST

CS_LIST_PRICE

CS_LIST_PRICE

CS_SALES_PRICE

CS_SALES_PRICE

CS_EXT_DISCOUNT_AMT

CS_EXT_DISCOUNT_AMT

CS_EXT_SALES_PRICE

CS_EXT_SALES _PRICE

CS_EXT_WHOLESALE_COST

CS_EXT_WHOLESALE_COST

CS_EXT _LIST_PRICE

CS_EXT _LIST_PRICE

CS_EXT TAX

CS_EXT_TAX

CS_COUPON_AMT

CS_COUPON_AMT

CS_EXT_SHIP_COST

CS_EXT_SHIP_COST

CS_NET_PAID

CS_NET_PAID

CS_NET_PAID_INC_TAX

CS_NET_PAID_INC_TAX

CS_NET_PAID_INC_SHIP

CS_NET_PAID_INC_SHIP

CS_NET_PAID_INC_SHIP_TAX

CS_NET_PAID_INC_SHIP_TAX

CS_NET_PROFIT

CS_NET_PROFIT

LF_CR

TPC Bench m&tankldtd SpeSification, Versiori72

Page58 of 137

CREATE VIEW crv as

SELECT d_date_sk cr_return_date_sk
,t_time_sk cr_return_time_sk
Ji_item_sk cr_item_sk

,cl.c_customer_sk cr_refunded_customer_sk
,cl.c_current_cdemo_sk cr_refunded_cdemo_sk

,cl.c_current_hdem

o_sk cr_refunded_hdemo_sk

,cl.c_current_addr_sk cr_refunded_addr_sk
,C2.c_customer_sk cr_returning_customer_sk
,c2.c_current_cdemo_sk cr_returning_cdemo_sk
,c2.c_current_hdemo_sk cr_returning_hdemo_sk

,c2.c_current_addr_sk cr_

returing_addr_sk

,cc_call_center_sk cr_call_center_sk
,cp_catalog_page_sk CR_CATALOG_PAGE_SK
,sm_ship_mode_sk CR_SHIP_MODE_SK
,w_warehouse_sk CR_WAREHOUSE_SK

,I_reason_sk cr_reason_sk

,cret_order_id cr_order_number
,cret_return_gty cr_return_quantity
,cret_return_amt cr_return_amt

,cret_return_tax cr_return_tax

,cret_return_amt + cret_return_tax AS cr_return_amt_inc_tax

,cret_return_fee cr_fee

,cret_return_ship_cost cr_return_ship_cost
,cret_refunded_cash cr_refunded_cash
,cret_reversed_charge cr_reversed_charge
,cret_merchant_credit cr_merchant_credit
,cret_return_amt+cret_return_tax+cret_return_fee

- cret_refunded_cash
FROM s_catalog_returns
LEFT OUTER JOIN date_dim

- cret_reversed_charge

ON (cast(cret_return_date as date) = d_date)

LEFT OUTER JOIN time_dim ON

((CAST(substr(cret_return_time,1,2) AS integer)*3600
+CAST (substr(cret_return_time,4,2) AS integer)*60

+CAST (substr(cret_return_time,7,2) AS integer)) = t_time)

LEFT OUTER JOIN item ON (cret_item_id = i_item_id)
LEFT OUTER JOIN customer c1 ON (cret_return_customer_id = c1.c_customer_id)
LEFT OUTER JOIN customer c2 ON (cret_refund_customer_id = c2.c_custo mer_id)

LEFT OUTER JOIN reason ON (cret_reason_id = r_reason_id)

- cret_merchant _credit cr_net_loss

LEFT OUTER JOIN call_center ON (cret_call_center_id = cc_call_center_id)
LEFT OUTER JOIN catalog_page ON (cret_catalog_page_id = cp_catalog_page_id)

LEFT OUTER JOIN ship_mode ON (cret_shipmod

e_id = sm_ship_mode_id)

LEFT OUTER JOIN warehouse ON (cret_warehouse_id = w_warehouse_id)

WHERE i_rec_end_date IS NULL AND cc_rec_end_date IS NULL;

Table 510: Column mapping for the catalog_returns fact table

Source Schema Column

Target Column

CR_RETURNB DATE_SK

CR_RETURNED DATE_SK

CR_RETURNED_TIME_SK

CR_RETURNED_TIME_SK

CR_SHIP_DATE_SK

CR_SHIP_DATE_SK

CR_ITEM_SK

CR_ITEM_SK

CR_REFUNDED_CUSTOMER_SK

CR_REFUNDED_CUSTOMER_SK

CR_REFUNDED_CDEMO_SK

CR_REFUNDED_CDEMO_SK

CR_REFUNDED_HDEMO_SK

CR_REFUNDED_HDEIO_SK

CR_REFUNDED_ADDR_SK

CR_REFUNDED_ADDR_SK

CR_RETURNING_CUSTOMER_SK

CR_RETURNING_CUSTOMER_SK

CR_RETURNING_CDEMO_SK

CR_RETURNING_CDEMO_SK

CR_RETURNING_HDEMO_SK

CR_RETURNING_HDEMO_SK

CR_RETURNING_ADDR_SK

CR_RETURNING_ADDR_SK

CR_CALL_CENTER_SK

CR_CALL_CENTER_SK

CR_CATALOG_PAGE_SK

CR_CATALOG_PAGE_SK

CR_SHIP_MODE_SK

CR_SHIP_MODE_SK

CR_WAREHOUSE_SK

CR_WAREHOUSE_SK

CR_REASON_SK

CR_REASON_SK

CR_ORDER_NUMBER

CR_ORDER