

Why You Should Run TPC-DS:A Workload Analysis
Meikel Poess

Oracle Corporation
400 Oracle Parkway

Redwood Shores, CA-94065, USA
650-633-8012

Meikel.Poess@oracle.com

Raghunath Othayoth Nambiar
Hewlett-Packard Company

20555 Tomball Parkway
Houston, TX-77070, USA

281-518-2748

Raghu.Nambiar@hp.com

David Walrath
Sybase Inc

561 Virginia Road
Concord, MA-01742, USA

978-287-1784

David.Walrath@sybase.com

ABSTRACT
The Transaction Processing Performance Council (TPC) is com-
pleting development of TPC-DS, a new generation industry stan-
dard decision support benchmark. The TPC-DS benchmark, first
introduced in the “The Making of TPC-DS” [9] paper at the 32nd
International Conference on Very Large Data Bases (VLDB), has
now entered the TPC’s “Formal Review” phase for new bench-
marks; companies and researchers alike can now download the
draft benchmark specification and tools for evaluation. The first
paper [9] gave an overview of the TPC-DS data model, workload
model, and execution rules. This paper details the characteristics
of different phases of the workload, namely: database load, query
workload and data maintenance; and also their impact to the
benchmark’s performance metric. As with prior TPC benchmarks,
this workload will be widely used by vendors to demonstrate their
capabilities to support complex decision support systems, by cus-
tomers as a key factor in purchasing servers and software, and by
the database community for research and development of optimi-
zation techniques.

1. INTRODUCTION
The TPC-DS benchmark, first introduced in the “The Making of
TPC-DS” [9] paper at the 32nd International Conference on Very
Large Data Bases (VLDB), has now entered the TPC’s “Formal
Review” phase for new benchmarks. During this step TPC mem-
ber companies and researchers alike are encouraged to download
the benchmark specification including the TPC provided tools, i.e.
data generator and query generator, to evaluate the benchmark. As
a consequence of this process the final version of TPC-DS might
differ slightly from the version presented in this paper.

TPC-DS is intended to provide a fair and honest comparison
of various vendor implementations by providing highly compara-
ble, controlled and repeatable tasks in evaluating the performance
of decision support systems (DSS). Its workload is expected to
test the upward boundaries of hardware system performance in
the areas of CPU utilization, memory utilization, I/O subsystem
utilization and the ability of the operating system and database
software to perform various complex functions important to DSS -
examine large volumes of data, compute and execute the best
execution plan for queries with a high degree of complexity,

schedule efficiently a large number of user sessions, and give
answers to critical business questions. In [9] we introduced the
pivotal parts of TPC-DS, such as schema, data set, workload,
metric and execution rules including the reasoning behind key
decisions. In this paper we focus on a detailed performance analy-
sis of TPC-DS’ workload.

TPC-DS’ workload consists of three distinct disciplines: Da-
tabase Load, Query Run and Data Maintenance. The query run is
executed twice, once before and once after the data maintenance
step. Each query run executes the same 99 query templates with
different bind variables in permutated order, thereby simulating a
workload of multiple concurrent users accessing the system. Us-
ing the terminology introduced in [9] these steps are executed in
the following order:

Figure 1: TPC-DS Execution Order
Using an arithmetic mean the elapsed times for these three disci-
plines are combined into the primary performance metric, called
QphH@SF, in the following way:

()TSTTT LoadQRDMQR

SSFSFQphDS
**01.021

1983600@
+++

=

TQR1:elapsed time of Query Run 1 TLoad: elapsed time of database load test.
TQR2:elapsed time of Query Run 2. S:number of simulated concurrent users (streams)
TDM:elapsed time of the Data Maintenance run. SF:scale factor.

Figure 2: TPC-DS Primary Metric
The Performance Metric reflects the effective query throughput
per second. The numerator represents the total number of queries
executed on the system “198 * S”, where 198 is the 99 individual
queries times two query runs and S is the number of concurrent
simulated users. The denominator represents the total elapsed
time as the sum of Query Run1, Data Maintenance Run, Query
Run 2 and a fraction of the Load Time. Note that the elapsed time
of the data maintenance run is the aggregate of S executions of all
data maintenance functions (see Section 5). By dividing the total
number of queries by the total elapsed time, this metric represents
queries executed per time period. Using an arithmetic mean to
compute the primary benchmark metric should cause DBMS de-
velopers to concentrate primarily on long-running queries first,
and then progressively continue with shorter queries. This gener-
ally matches the normal business case, where customers spend
most of their tuning resources on the slowest queries.

The significant number of queries to optimize will also pro-
vide a test bed for self tuning databases since the diverse query set
inflicts fluctuating resource pressures on the system. Oscillating

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very Large Database En-
dowment. To copy otherwise, or to republish, to post on servers or to redistrib-
ute to lists, requires a fee and/or special permissions from the publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1138

between CPU, IO (large and small) and Memory intensive que-
ries, a system that can adapt to the resource needs of every query
should excel in this type of workload.

Using existing query optimizers of three commercial DBMS
products, Naveen Reddy and Jayant Haritsa analyzed their ability
to generate the optimal plan of TPC-H query templates varying
selectivity predicates [7]. Their results, reported at VLDB 2005,
show that current query optimizers generate a variety of query
plans, some of which are sub-optimal, when selectivity predicates
are varied. The next generation query optimizers need to generate
consistently good and yet simple query plans under any circum-
stances. TPC-DS with its 99 query templates and large schema is
an excellent benchmark for testing query optimizers.

Analyzing a workload independently of a specific system is
challenging. Apart from mainstream database management sys-
tems (DBMS), such as multi purpose relational databases systems
(RDBMS) and specialized on line analytical processing systems
(OLAPS) there are technologies emerging with new ideas on how
to efficiently execute business intelligence queries on very large
databases. Michael Stonebreaker’s C-Store, presented at VLDB
2005, is just one example for new approaches to increasing query
processing by utilizing innovative storage methodologies [6]. This
paper focuses on analyzing TPC-DS’ workload without any spe-
cific architecture in mind. The paper is divided in three large ar-
eas. The first part (Section 2) describes TPC-DS’ key schema and
data set characteristics, laying the foundation for the main part,
the detailed analysis of the three disciplines of TPC-DS’ work-
load: Database Load (Section 3), Query Run (Section 4) and Data
Maintenance (Section 5). In the third part (Section 6) we conclude
our paper by globally analyzing all three disciplines. Using differ-
ent scenarios we show the impact of changes in the three work-
load disciplines on the primary metric.

2. KEY SCHEMA AND DATA SET CHAR-
ACTERISTICS

The design of the data set is motivated by the need to challenge
the statistic gathering algorithms used for deciding the optimal
query plan and the data placement algorithms, such as clustering
and partitioning. TPC-DS uses a hybrid approach of data domain
and data scaling [1] [15]. While pure synthetic data generators
have great advantages TPC-DS uses a mixture of both synthetic
and real world based data domains. Synthetic data sets are well
understood, easy to define and implement. However, following
the TPC’s paradigm to create benchmarks that businesses can
relate to, a hybrid approach to data set design scores many advan-
tages over both pure synthetic and pure real world data. This ap-
proach allows both realistically skewed data distributions yet still
a predictable workload.

Compared to previous TPC decision support benchmarks
 [12] TPC-DS uses much wider tables, of up to 39 columns with
domains ranging from integer, float (with various precisions),
char, varchar (of various lengths) and date. Combined with a large
number of tables (total of 25 tables and 429 columns) the schema
gives both the opportunity of a realistic and challenging query set
(see Section 4) as well as an opportunity for innovative data
placement algorithms and other schema optimizations, such as
complex auxiliary data structures. The number of times columns
are referenced in the dataset varies between 0 and 189. Figure 3
shows the number of column references, classified in buckets, for
those columns that are referenced. Of those columns accessed, the

largest number of columns are referenced between 5 and 49 times.
The large column set and diverse query set of TPC-DS also pro-
tects its metric from unrealistic tuning and artificial inflations of
the metric, a problem which rapidly destroyed the usefulness of
an older decision support benchmark, TPC-D, in the late 1990s.
That, combined with the complex data maintenance functions (see
Section 5) and load time participating in the primary performance
metric creates the need for fast and efficient algorithms to create
and maintain auxiliary data structures and the invention of new
algorithms.

Figure 3: Number of Column References

The introduction of NULL values into any column except the
primary keys opens yet another dimension of challenges for the
query optimizer compared to prior TPC decision support bench-
marks. The percent of NULL values in each non-primary key
column varies from 4 to 100 percent based on the column. Most
columns have 4 percent NULL values. The important
rec_end_date columns (see 5.1) have 50 percent NULL val-
ues. Some columns were unused (total of 236) or intentionally left
entirely NULL for future enhancements of the query set.
3. DATABASE LOAD
The process of creating a TPC-DS test database is denoted as the
database load. It consists of both hardware and database prepara-
tion steps, some of which are timed and un-timed. All steps must
be fully disclosed in the benchmark publication, called the full
disclosure report, as per TPC guidelines. The exact steps executed
in a benchmark publication depend on the specific system and
database implementation. However, the following table lists
common database load steps.

Database Load Step Timed
System preparation no
Flat file generation no
Permutation of flat file rows no
Database creation no
Tablespace creation no
Loading of base tables yes
Creation and validation of constraints. yes
Creation of auxiliary data structures yes
Analysis of tables and auxiliary data structures yes

Table 1: Database Load Steps
In order to unambiguously measure the timed steps of the data-
base load on different DBMS implementations, the benchmark
defines the start of the load either immediately after the tables and
auxiliary data structures are created or when the first character of
any flat file is accessed, whichever occurs first. It ends when the
database is fully configured for the performance test.

The database can be loaded from flat files or in-line using,

1139

for example, named pipes. If data is loaded from flat files, the
time to generate the data is not timed, but the storage to host the
files must be priced. However, if an in-line method is used, the
data is loaded as it is generated and, therefore, the generation is
timed. The TPC-DS data generator (dbgen2) can be fully parallel-
ized. To fully utilize one CPU, a storage subsystem must support
about 400 IOs per second. Assuming an adequate IO subsystem, it
takes about 20 seconds to generate 1GByte of data using one core
of a current x86-class processor. So on a four core x86-class proc-
essor system, a 100Gbyte database can be generated in about 500s
seconds. As noted above, if data is loaded in-line, this overhead
will be included in the total elapsed time of the load. [2] describes
dbgen2 and its internals more in detail.

But why test the database load at all? Isn’t a database loaded
once and then only incrementally maintained? It turns out that
there are many reasons DSS get reloaded in real life. Most DSS
outgrow capacity after a few years of operation demanding hard-
ware upgrades, which result in reloading the database in most
cases. Another reason for reload is a significant change in data
distributions. For instance, if the data distribution in the partition-
ing column changes dramatically so that data is no longer evenly
distributed across disks, a reload might be necessary to allow even
usage of the entire system.

There is also an important benchmark purpose for measuring
the initial database load and making it part of the primary bench-
mark metric. Having the load as a timed portion in the overall
metric is a very important step in allowing complex auxiliary
structures commonly used in DSS, yet, having a robust workload
that cannot be easily broken with clever auxiliary structures as
happened to TPC-D. Table 1 lists the measured steps of the load.
Dbgen2 generates flat files that correspond in structure to those of
the data warehouse tables. That is, no complex restructuring of
data is required (see Section 5). The first step, Loading of Base
Tables, measures how fast a system can read the input data and
convert the text into its internal binary representation (a.k.a. data-
base pages). The next two steps measure how fast constraints and
auxiliary data structures such as indexes and materialized views
are created and validated. The last step measures how fast the
system analyses the data that has been loaded. This is particularly
important since the TPC-DS data is highly skewed (see [2] and
 [9] for more details).

4. QUERY RUN
In order to address the enormous range of query types and user
behaviors encountered by decision support systems, TPC-DS
utilizes a generalized query model. This model utilizes 99 query
templates, which enable the data generator (qgen2) to generate
virtually any number of SQL queries by means of query substitu-
tion [2]. The query templates test the interactive and iterative
nature of on-line analytical processing (OLAP) queries, the ex-
traction of queries for data mining tools, ad-hoc queries, and the
more planned behavior of well known reporting queries.

A query run is clearly central to the TPC-DS benchmark. It
is executed twice and both runs are counted in the primary metric,
while the load and data maintenance are each executed once.
Each query run executes 20 or more concurrent query streams.
The multiple query streams simulate many users executing que-
ries against the database concurrently. (see [9] for more details).

Running multiple streams concurrently on a system imposes
challenges both on the system’s hardware and software. In order

to accommodate multiple streams the hardware needs to be sized
such that each user has enough memory to execute resource inten-
sive operations such as joins and sorts. It also needs to be sized so
that all users have enough temporary space to execute queries
with large intermediate results sets. The DBMS also needs to find
the optimal execution plan for the multiple concurrent users. An
optimal execution plan, including the execution algorithms and
degree of parallelism, depend on both the query being executed
and the available system resources at time of execution. In an
extreme case serial execution might be optimal: when a system is
heavily loaded due to other work, running with less parallelism
prevents the system from being overloaded; overall system
throughput often can benefit, and even the query being optimized
sometimes can benefit from executing a query using a serial exe-
cution plan because of the overhead of parallel execution. In case
of a Grid system (multiple nodes) smart parallelization, e.g. allo-
cation of work units across query execution nodes is essential for
optimal performance [3]. It is also essential that the DBMS and
the operating system (OS) are orchestrated to work together. In
commercial DSS products without active resource management,
the OS is in charge of scheduling resources such as memory and
IO. It is becoming more and more important that the DBMS takes
on this responsibility. In general a frugal system that economi-
cally assigns resources and manages resources dynamically will
excel in a multi stream run.

Nevertheless, in order to fully understand the query work-
load it is essential to understand both each query and the query
mix. In the following sections we analyze all 99 query templates
from different perspectives. First, we characterize them by the
query classes that TPC-DS defines, followed by a characterization
by hardware resources and concluded with a characterization by
SQL feature. In each section we identify queries that are dis-
cussed in detail at the end of Section 4.

4.1 Characterization by Query Class
A sophisticated decision support system must support a diverse
user population. While there are many ways to categorize those
diverse users and the queries that they generate, TPC-DS has
defined four broad non mutually exclusive query classes that,
taken together, characterize most decision support queries: Re-
porting, Ad Hoc, Iterative and Data Mining (Table 2).

Query Class Number of Queries
Reporting Class 41
Ad Hoc Class 59
Iterative Class 4
Data Mining Class 23

Table 2: Characterization by Query Class
Reporting queries capture the “reporting” portion of a DSS sys-
tem. They include queries that are executed periodically to answer
well-known, pre-defined questions about the financial and opera-
tional health of a business. Although reporting queries tend to be
static, minor changes are common. From one use of a given re-
porting query to the next, a user might choose to shift focus by
varying a date range, geographic location or a brand name. TPC-
DS defines 41 reporting query templates.

Ad hoc queries capture the dynamic nature of a DSS system,
in which impromptu queries are constructed to answer immediate
and specific business questions. The central difference between ad
hoc queries and reporting queries is the limited degree of fore-
knowledge that is available to the DBA when planning for an ad
hoc query. Other than the most generic schema optimizations,

1140

with ad-hoc queries a DBA has little or no foreknowledge of use-
ful physical data layout (e.g. clustering and partitioning) or opti-
mal auxiliary data structures (e.g. indexes and materialized
views). TPC-DS defines 59 ad hoc query templates.

Amalgamating both types of queries has been traditionally
difficult in benchmark environments since per the definition of
the benchmark all queries, apart from bind variables, are known
in advance. TPC-DS accomplishes this fusion by dividing the
schema into reporting and ad hoc “parts” by a ratio of 4/6. . The
store and web sales channels constitute an ad hoc portion of the
schema, while the catalog sales channel constitutes the reporting
part. For the catalog sales channel complex auxiliary data struc-
tures are allowed, while for the other two channels only simple,
basic auxiliary data structures are allowed. Hence, queries pre-
dominantly accessing the ad hoc part constitute the ad hoc query
set while the queries predominantly accessing the reporting part
are considered the reporting query templates.

Iterative queries allow for the exploration and the analysis of
business data to discover new and meaningful relationships and
trends. While this class of queries is similar to the Ad Hoc Query
class, it is distinguished by a scenario-based user session, in
which a sequence of queries is submitted, with one leading to
another, and where the sequence may include both complex and
simple queries. There are 4 iterative query templates defined.

Data mining is the process of sifting through large amounts
of data to produce data content relationships. It can predict future
trends, allowing businesses to make proactive, knowledge-driven
decisions. This class of queries typically consists of joins and
large aggregations that return large data result sets (more than
1,000 rows) for extraction and further analysis in specialized data
mining tools. TPC-DS defines 23 data mining query templates.

4.2 Characterization by Schema Coverage
The schema design is the foundation for a good query set. If the
schema does not allow for the designing of queries that test the
performance of all aspects of a DSS, the benchmark has not suc-
ceeded in a central goal. TPC-DS is designed with a multiple-
snowflake schema allowing the exercise of all aspects of com-
mercial DSS, built with a modern DBMS. The snowflake schema
is designed using a retail model consisting of three sales channels
plus an inventory fact table. Each sales channel consists of two
fact tables each: sales and returns, while the inventory consists of
one fact table. The corresponding sales and returns tables can be
joined with their foreign key-primary key relationships. The fact
tables of different sales channels can be joined using their shared
dimensions, e.g. item or customer. For a detailed ER diagram
please refer to [9] and [13].

This design allows for a rich query set. It allows query exe-
cution of both star schema and 3rd normal form (3NF) execution
paths. Typical executions in a star schema might involve bitmap
accesses, bitmap merges, bitmap joins and conventional index
driven join operations. The access paths in a 3NF DSS system are
often dominated by large hash or sort-merge joins, and conven-
tional index driven joins are also common. In both systems large
aggregations, which often include large sort operations are wide-
spread. This diversity imposes challenges both on hardware and
software systems. High sequential I/O-throughput is critical to
excel in large hash-join operations. At the same time, index
driven queries stress the I/O subsystem’s ability to perform small
random I/Os. Additionally, this diversity also challenges the
query optimizer in its decision to either use a star schema ap-

proach, such as star transformation, or a more traditional ap-
proach, such as nested loops, hash-joins etc. This seems to be an
area in which current query optimizers often have huge deficits.
As explained in the previous section, the partitioning of the
schema into three sales channels allow for amalgamating both ad
hoc and reporting queries into the same benchmark. Thirdly, the
large number of the tables allow for both a richness variety of
query structures. It allows for queries accessing either a few or
many tables, both fact and dimension tables as well as the crea-
tion of “hot” tables that are accessed in almost all queries.

 Schema Coverage Number of Queries
One Fact Table 54
Multiple Fact Tables 39
Only Dimension Tables 6
Only Store Sales Channel 37
Only Catalog Sales Channel 12 Se

ct
io

n
1

Only Web Sales Channel 12
date_dim 91
store 68
store_sales 64
item 58
customer 57
catalog_sales 38
web_sales 36
customer_address 34
customer_demographics 20
household_demographics 17
store_returns 15
catalog_returns 12
promotion 10
warehouse 10
web_returns 10
call_center 6
income_band 6
time_dim 5

Se
ct

io
n

2

web_site 5
Table 3: Query Characterization by Schema Coverage

Table 3 displays the schema coverage of all TPC-DS queries. The
first section lists the number of queries that access interesting
table combination. There are 54 individual queries that only ac-
cess one fact table. These queries access either only one sales
table, one return table or the inventory table, representing tradi-
tional star. A good example of this type of query is Query 81 (see
Figure 8). There are also 39 queries that access more than one fact
table. Queries of this type can further be divided into queries that
join fact tables and those that union the results of fact tables.
There are 17 queries that union sub-queries accessing fact tables
and 22 queries that join fact tables either directly or thought SQL
intersect or except operations. The later query type constitutes the
more traditional execution of queries in a 3rd NF schema. They
join large tables, thereby exercising large hash, merge, or index
based joins, and in some cases produce large intermediate result
sets and large sorts. A good example is Query 78 (see Figure 10).

Section 2 in Table 3 summarizes the table coverage of all
queries. It shows that the Date_dim table is accessed in almost
every table. This is not surprising because almost all queries
group or constrain their result on days, weeks, months or years. It
also shows that Store, Item, Customer are the most accessed di-
mensions (over 50% of the queries). The most accessed fact table
is Store_sales with 64 references, followed by Catalog_sales and
Web_sales with 38 and 36 references.

1141

4.3 Characterization by Resource Utilization
Each decision support query has its own hardware resource utili-
zation pattern, unique to the way it is executed on a particular
system. On an SMP system the system resources that are consid-
ered most important, especially when sizing a system for a par-
ticular workload, are CPU, reads and writes from/to the disk sub-
system, inter-node communication network and memory. In order
to understand a workload it is essential to examine queries that
exhibit extreme behaviors, such as CPU intensive queries or IO
intensive queries, and that, at the same time, exhibit a simple
structure. In TPC-H the most CPU intensive query is typically
Query 1, while the most IO intensive query is typically Query 6.
In this section we characterize TPC-DS query templates accord-
ing to their IO and CPU consumption.

Figure 4 graphs the CPU and IO utilization of all 99 query
templates. From each query template we generate one query using
the default substitution parameters for a total of 99 SQL queries.
We then run all queries sequentially on a commercial RDBMS
and analyze their execution patterns for CPU utilization, and av-
erage MBytes per second of reads and writes which is combined
into average IO utilization.

Due to decision support queries being frequently complex,
often joining multiple tables requiring different join methods,
sorting large amounts of data and computing aggregate data, their
execution pattern is typically not in a steady state for a long time.
E.g., the usual execution pattern of a hash join can be described as
a relatively short burst of intensive IO during the creation of the
hash table of the left side of the join followed by a longer, usually
CPU bound phase where the right side of the join is scanned and
probed into the hash table. Hence, one cannot infer any specific
CPU/IO pattern from the two parameters above. However, they
give a general idea how resource intensive queries are.

Figure 4: Characterization by Resource Utilization

Figure 4 graphs the average CPU and IO utilization in a two
dimensional chart. The x-axis shows the average CPU utilization
while the y-axis shows the average IO utilization. Each data point
indicates one query. Dividing the chart into four quadrants we
group queries with specific IO and CPU patterns. IO intensive
queries with low CPU utilization are summarized in Quadrant 1
while CPU intensive queries with low IO utilization are grouped
in Quadrant 3. Quadrant 2 groups IO and CPU intensive queries
while Quadrant 4 groups high CPU and low IO intensive queries.
Most queries are located in the fourth quadrants while quadrants 2
and 3 are equally populated. In Section 4.5 we analyze examples
of pure CPU and pure IO intensive queries. Query 82 servers as

an IO intensive example while Query 70 serves as a CPU inten-
sive example.

4.4 Characterization by SQL Features
Database functionality has increased dramatically since the TPC
introduced its first decision support benchmark. SQL functional-
ity has especially increased and, thanks to ANSI, the syntax to
express more complex queries concisely has been standardized.
TPC-DS queries are mostly phrased in compliance with SQL1999
core with OLAP amendment. Table 4 shows how many TPC-DS
queries make use of certain SQL constructs.

SQL Feature Number of Queries
Common Sub-expression 31
Correlated Sub-Query 15
Uncorrelated Sub-Query 76
Group By 78
Order By 64
Rollup 9
Partition 11
Exists 5
Union 17
Intersect 2
Minus 1
Case 24
Having 5

Table 4: Characterization by SQL Functionality

4.5 Performance Analysis of Selected Queries
Figure 5 shows an IO intensive query, Query 82. It lists items that
are offered from specific manufacturers, together with their cur-
rent prices that were sold through the store sales channel. Only
items in a given $30 price range that consistently had a quantity
on hand in any warehouse between 100 and 500 in a 60-day pe-
riod are chosen by this query. According to the classification in
Section 4.1 Query 82 is an ad hoc query.
SELECT i_item_id
 ,i_item_desc
 ,i_current_price
FROM item, inventory
 ,date_dim ,store_sales
WHERE i_current_price between [P] and [P] + 30
 AND inv_item_sk = i_item_sk
 AND d_date_sk=inv_date_sk

AND d_date between cast('[DATE]' as date)
 AND (cast('[DATE]' as date)+60)
AND i_manufact_id IN ([ID.1],[ID.2],[ID.3])

 AND inv_quantity_on_hand between 100 and 500
 AND ss_item_sk = i_item_sk
GROUP BY i_item_id
 ,i_item_desc
 ,i_current_price
ORDER BY i_item_id;

Figure 5: IO Intensive Query (Query 82)
Query 82 joins the dimensions Date_dim and Item with the

two largest tables, Store_sales and Inventory causing IO intensive
scans of vast amount of data. The simple local predicates
“i_manufact_id IN ([ID.1],[ID.2],[ID.3])” and
“i_current_price between [P] and [P] + 30”
reduce the number of rows to be returned from the Item table to
0.15 percent and the simple local predicate “d_date between
cast('[DATE]' as date) AND(cast('[DATE]' as
date)+60)” reduce the number of rows to be return from the
Date_dim table to 0.8 percent. Yet, large amounts of data need to

1142

be scanned as no additional auxiliary data structures, such as in-
dexes, are allowed on the inventory table, e.g. an index on the
inv_quantity_on_hand column.In this query, the number
of rows that are fed into the subsequent grouping and sort opera-
tions are so small that these operations, which tend to be more
CPU intensive, contribute insignificantly to the overall query
execution time. This query is classified as an ad hoc query.
SELECT
 sum(ss_net_profit) as total_sum
 ,s_state
 ,s_county
 ,grouping(s_state)+grouping(s_county)
 ,rank()over(partition by grouping(s_state)
 +grouping(s_county)
 ,case when grouping(s_county)=0
 then s_state end
 order by sum(ss_net_profit) desc)
FROM store_sales
 ,date_dim
 ,store
WHERE d_year = [YEAR]
 AND d_date_sk = ss_sold_date_sk
 AND s_store_sk = ss_store_sk

AND s_state in
 (SELECT s_state
 FROM (SELECT
 s_state
 ,rank()over(partition by s_state
 order by sum(ss_net_profit)desc) as r
 FROM store_sales
 ,store
 ,date_dim
 WHERE d_year =[YEAR]
 AND d_date_sk = ss_sold_date_sk
 AND s_store_sk = ss_store_sk
 GROU BY s_state)
 WHERE r <= 5)
 GROUP BY ROLLUP(s_state,s_county)
 ORDER BY
 lochierarchy desc
 ,CASE WHEN lochierarchy = 0 THEN s_state END
 ,rank_within_parent;

Figure 6: CPU Intensive Query (Query 70)

Query 70 in Figure 6 shows a CPU intensive query. It com-
putes the store sales net profit ranking by state and county for a
given year and determines the five most profitable states. This
query joins the Store and Date_dim dimension tables with the
store_sales table. The only projection predicate is the constraint
on date “d_year = [YEAR]” causing large amount of data to be
scanned. However, complex operations, such as the group-
ing/ranking functions, the aggregate functions and the case state-
ments contribute to a high CPU overhead making this a very CPU
intensive query. The fact that only the sales table is accessed clas-
sifies this query as an ad hoc query.

Figure 7 shows Query 40. It calculates the impact of an item
price change on catalog sales by computing the total sales for
items in a 30 day period before and after the price change. The
items are grouped by the warehouse location that delivered them.
This query is a reporting query because it accesses the catalog
sales table and, therefore, complex auxiliary structures such as
materialized views or bitmap indexes are allowed in order to op-
timize the execution of this query.

SELECT
 w_state
 ,i_item_id
 ,SUM(CASE WHEN d_date < '2000-03-11'
 THEN cs_sales_price-cr_refunded_cash

 ELSE 0 END) as sales_before
 ,SUM(CASE WHEN d_date >= '2000-03-11' as date

 THEN cs_sales_price-cr_refunded_cash
 ELSE 0 END) as sales_after

 FROM
 catalog_sales left outer join catalog_return
 on(cs_item_sk = cr_item_sk
 and cs_order_number = cr_order_number)
 ,warehouse, item, date_dim
WHERE i_current_price BETWEEN 0.99 and 1.49
 AND i_item_sk = cs_item_sk
 AND cs_warehouse_sk = w_warehouse_sk
 AND cs_sold_date_sk = d_date_sk
 AND d_date between(cast('2000-03-11'as date)-30)
 and(cast('2000-03-11'as date)+30)
 GROUP BY w_state,i_item_id
 ORDER BY w_state,i_item_id;

Figure 7: Reporting Query (Query 40)
WITH customer_total_return AS
 (select cr_returning_customer_sk as ctr_cust_sk
 ,ca_state as ctr_state
 ,sum(cr_return_amt_inc_tax) as ctr_return
 FROM catalog_returns
 ,date_dim
 ,customer_address
 WHERE cr_returned_date_sk = d_date_sk
 AND d_year =[YEAR]
 AND cr_returning_addr_sk = ca_address_sk
 GROUP BY cr_returning_customer_sk
 ,ca_state)
 SELECT c_customer_id,c_salutation
 ,c_first_name,c_last_name
 ,ca_street_number,ca_street_name
 ,ca_street_type,ca_suite_number
 ,ca_city,ca_county
 ,ca_state,ca_zip,ca_country,ca_gmt_offset
 ,ca_location_type,ctr_return
 FROM customer_total_return ctr1
 ,customer_address
 ,customer
 WHERE ctr1.ctr_return
 > (SELECT avg(ctr_return)*1.2
 FROM customer_total_return ctr2
 WHERE ctr1.ctr_state = ctr2.ctr_state)
 AND ca_address_sk = c_current_addr_sk
 AND ca_state = '[STATE]'
 AND ctr1.ctr_cust_sk = c_customer_sk
 ORDER BY c_customer_id,c_salutation,c_first_name
 ,c_last_name,ca_street_number,ca_street_name
 ,ca_street_type,ca_suite_number,ca_city
 ,ca_county,ca_state,ca_zip,ca_country
 ,ca_gmt_offset ,ca_location_type
 ,ctr_return;
Figure 8: Reporting Query/One Fact Table Access (Query 81)
Figure 8 is an example of a reporting query and one that accesses
only one fact table. For a specific year and state it locates custom-
ers with bad item returning habits. It lists those customer names
with their detailed contact information who have returned items
that they had bought from the catalog more than 20 percent the
average time their peer customers have returned items in the same
time period. The selectivity predicate on year restricts the total
data amount to 20% of the catalog return table. The state column
in the Customer_address table is skewed, e.g. there are three
groups of states: small, medium and large. The selectivity predi-
cate on state selects a large state, hence selecting about 5 percent

1143

of the dataset. Query 81 qualifies as a reporting query because it
accesses the catalog sales channel. Data to speed up this query
can be materialized or complex indexes can be defined.
WITH frequent_ss_items as
(SELECT substr(i_item_desc,1,30) itemdesc
 ,i_item_sk item_sk
 ,d_date solddate
 ,count(*) cnt
 FROM store_sales ,date_dim ,item
 WHERE ss_sold_date_sk = d_date_sk
 AND ss_item_sk = i_item_sk
 AND d_year between [YEAR] and [YEAR]+2
 GROUP BY substr(i_item_desc,1,30)
 ,i_item_sk
 ,d_date
 HAVING count(*) >4),
 max_store_sales AS
(SELECT MAX(csales) tpcds_cmax

from
 (select c_customer_sk
 ,SUM(ss_quantity*ss_sales_price)

csales
 FROM store_sales ,customer ,date_dim
 WHERE ss_customer_sk = c_customer_sk
 AND ss_sold_date_sk = d_date_sk
 AND d_year between [YEAR] and [YEAR]+2
 GROUP BY c_customer_sk) x),
 best_ss_customer as
(SELECT c_customer_sk
 ,sum(ss_quantity*ss_sales_price) ssales
 FROM store_sales
 ,customer
 WHERE ss_customer_sk = c_customer_sk
 GROUP BY c_customer_sk
 HAVING sum(ss_quantity*ss_sales_price)
 >0.95*(SELECT *
 FROM max_store_sales))
 SELECY sum(sales)
 FROM (
 (SELECT cs_quantity*cs_list_price sales
 FROM catalog_sales ,date_dim
 WHERE d_year = [YEAR]
 AND d_moy = 7
 AND cs_sold_date_sk = d_date_sk
 AND cs_item_sk in (SELECT item_sk
 FROM frequent_ss_items)
 AND cs_bill_customer_sk IN
 (SELECT c_customer_sk
 FROM best_ss_customer)
)UNION ALL
 (SELECT ws_quantity*ws_list_price sales
 FROM web_sales ,date_dim
 WHERE d_year = [YEAR]
 AND d_moy = 7
 AND ws_sold_date_sk = d_date_sk
 AND ws_item_sk IN(select item_sk
 FROM frequent_ss_items)
 AND ws_bill_customer_sk IN
 (SELECT c_customer_sk
 FROM best_ss_customer)));

Figure 9: Iterative Query (Query 24)
Figure 9 shows an example of an iterative query. Because of
space constraints we print only the first iteration in its entirety.
The following iterations of this query differ only in the predicates,
which we list at the end of the query. The first iteration identifies
customers whose sales amount is greater than 95% of the maxi-
mum customer sales in a 3-year period including those items they
bought most frequently. For the purpose of this query the “most
frequently sold items” are defined as items that were sold consis-
tently more than 4 times a day in stores during the same 3 year

period. The query returns the sales sum of these frequently sold
items bought by the 5 percent of the best customers through the
web and catalog sales channels in a specific month (July) of the
last year in the above period.

Each of the following iterations in this query define the same
common sub-expressions as the first iteration: frequent_ss_items,
max_store_sales and best_ss_customer. The second iteration finds
detailed information about the top customers. That is, instead of
just returning the sum of sales, it returns the last name, first name
and sales of the particular customer. The idea behind this iteration
is that the user is first interested in the total sales and then drills
down into who actually contributed to the total sales.

The third through the last iteration simulate the user drilling
further into the Customer and Customer_demographics dimen-
sions by adding additional predicates on the Customer and Cus-
tomer_demographics dimensions:

Iteration 3: non-gift sales,
 bill_customer = ship_to_customer
Iteration 4: customers with a specific gender,

cd_gender=’m’
Iteration 5: customers with a specific marital status,

cd_marital_status=’d’
Iteration 6: customers with a specific purchase estimate,

cd_purchase_estimate=10000

The following Query 64 in Figure 10 shows an example of a
query joining multiple fact tables. The query is searching for pat-
terns of returns between two years in certain price ranges for cus-
tomers with certain demographic characteristics.

This query is interesting to the benchmark in a couple
of aspects: it joins across 4 fact tables in two subject areas (store
sales and web sales) within a common table expression, with a
total of 19 table references in the common table expression’s
FROM clause. That common table expression is joined to itself in
the outermost SELECT for a total of 38 table references in the
query. By joining across fact tables, it creates potentially large
many-to-many joins between the fact tables, which in combina-
tion with the number of tables in the FROM clauses gives a mod-
estly complex join topology to optimize, where some joins may
be large and difficult to estimate the output row counts.
WITH cross_sales AS
(select i_product_name product_name
 ,i_item_sk item_sk,w_state warehouse_state
 ,w_warehouse_name warehouse_name
 ,ad1.ca_street_number b_street_number
 ,ad1.ca_street_name b_streen_name
 ,ad1.ca_city b_city,ad1.ca_zip b_zip
 ,ad2.ca_street_number c_street_number
 ,ad2.ca_street_name c_street_name
 ,ad2.ca_city c_city
 ,ad2.ca_zip c_zip,d1.d_year as syear
 ,d2.d_year as fsyear,d3.d_year s2year
 ,count(*) cnt,sum(ss_wholesale_cost) s1
,sum(ss_sales_price) s2
 ,sum(ss_net_profit) s3
 ,sum(cs_wholesale_cost) s4
 ,sum(cs_sales_price) s5,sum(cs_net_profit) s6
 ,sum(ws_wholesale_cost) s7
 ,sum(ws_sales_price) s8,sum(ws_net_profit) s9
 FROM store_sales,store_returns
 ,web_sales,web_returns
 ,catalog_sales,catalog_returns
 ,date_dim d1,date_dim d2,date_dim d3

1144

 ,warehouse,item,customer
 ,customer_demographics cd1
 ,customer_demographics cd2,promotion
 ,household_demographics hd1
 ,household_demographics hd2
 ,customer_address ad1,customer_address ad2
 ,income_band ib1 ,income_band ib2
 WHERE ws_warehouse_sk = w_warehouse_sk
 AND ss_sold_date_sk = d1.d_date_sk
 AND ws_bill_customer_sk = c_customer_sk
 AND ws_bill_cdemo_sk= cd1.cd_demo_sk
 AND ws_bill_hdemo_sk = hd1.hd_demo_sk
 AND ws_bill_addr_sk = ad1.ca_address_sk
 AND ss_item_sk = i_item_sk
 AND ss_item_sk = sr_item_sk
 AND ss_ticket_number = sr_ticket_number
 AND ss_item_sk = ws_item_sk
 AND ws_item_sk = wr_item_sk
 AND ws_order_number = wr_order_number
 AND ss_item_sk = cs_item_sk
 AND ws_item_sk = cr_item_sk
 AND cs_order_number = cr_order_number
 AND c_current_cdemo_sk = cd2.cd_demo_sk
 AND c_current_hdemo_sk = hd2.hd_demo_sk
 AND c_current_addr_sk = ad2.ca_address_sk
 AND c_first_sales_date_sk = d2.d_date_sk
 AND c_first_shipto_date_sk = d3.d_date_sk
 AND ws_promo_sk = p_promo_sk AND i_size='[SIZE]'
 AND hd1.hd_income_band_sk=ib1.ib_income_band_sk
 AND hd2.hd_income_band_sk=ib2.ib_income_band_sk
 AND cd1.cd_marital_status<>cd2.cd_marital_status
 AND ib1.ib_upper_bound between [INC1]
 and [INC1] + 20000
 AND ib2.ib_upper_bound between [INC2] AND
 [INC2] + 20000
 AND hd1.hd_buy_potential = '1001-5000' and
 AND hd2.hd_buy_potential = '501-1000'
 AND (i_current_price between [P1] and [P1]+10
 OR i_current_price between [P2] and [P2]+10)
GROUP BY i_product_name,i_item_sk
 ,w_warehouse_name,w_state
 ,ad1.ca_street_number,ad1.ca_street_name
 ,ad1.ca_city,ad1.ca_zip
 ,ad2.ca_street_number,ad2.ca_street_name
 ,ad2.ca_city,ad2.ca_zip
 ,d1.d_year,d2.d_year,d3.d_year)
SELECT * FROM cross_sales cs1,cross_sales cs2
WHERE cs1.item_sk=cs2.item_sk
 AND cs1.syear = [YEAR] and cs2.syear = [YEAR] +1
ORDER BY cs1.product_name,cs1.warehouse_name
 ,cs2.cnt;

Figure 10: Query Joining Multiple Fact Tables (Query 64)

5. DATA MAINTENANCE
An important component in the life-cycle of a DSS is the mainte-
nance of fact tables and slowly changing dimensions, commonly
referred to as the ETL process (Extraction, Transformation and
Load). Its performance is becoming more and more important as
the time between database updates shrinks, especially for global
24x7 operations utilizing DSS. In extreme cases the time window
for incremental maintenance is approaching zero making so-
called trickle updates to database tables necessary. At the same
time the number and complexity of auxiliary data structures that
are commonly used in DSS to reduce query elapsed time are dras-
tically increasing the execution time of the data maintenance
processes.

Having realized that a successful benchmark, must have a
narrow scope of components whose performance will bemeas-
ured, TPC-DS defines a server centric data maintenance process,
also referred to as ELT (Extraction, Load, Transformation). Con-

trary to traditional approaches that utilize specialized tools or
custom written code, in TPC-DS only some form of SQL is al-
lowed to implement the data maintenance process. Existing
DBMS products in recent years have improved speed and func-
tionality to the level where increasing numbers of customers are
executing simple to moderately complex transformation processes
in their warehouse DBMS rather than using a separate specialized
tool. Advantages of ELT are:
• ELT is parallelized according to the data set, and disk I/O is

usually optimized at the engine level for faster throughput,
• ELT scales with the existing hardware and RDBMS engine,
• even ignoring scalability, ELT leverages the existing DBMS

and hardware for better ROI,
• ELT keeps all data in the DBMS all the time.

In TPC-DS data from operational systems is provided in the form
of flat files, also referred to as the refresh data set. Each flat file of
the refresh data set models the content of one table in the ficti-
tious operational system. Taken together these tables constitute
the schema of this system. Starting with the reading of the refresh
data set, the ELT process in TPC-DS includes the integration and
consolidation of data from operational systems, thereby applying
diverse workload consisting of data transformations that range
from simple string manipulations to complex 3rd normal form de-
normalizations and various algorithms to maintain slowly chang-
ing dimensions and fact tables. An overview of data maintenance
is depicted in the following Figure 11.

Figure 11: Data Maintenance Flow

Step 1 loads the refresh data set into internal tables. Each file is
loaded into one table. Step 2 transforms internal tables so that the
data can be loaded into the data warehouse tables. If additional
disk space is necessary for this operation, a staging area can be
used, which must be priced. There are several types of transfor-
mations as follows. Direct source to target transformation: This
most common type of transformation is applied to tables in the
data warehouse that have an equivalent table in the operational
schema. Multiple sources to one target transformation: This trans-
formation translates the third normal form of the operational
schema into the de-normalized form of the data warehouse by
combining multiple source tables. I.e. in the operational schema
transactions are usually normalized into lineitems and orders. In a
dimensional data warehouse this relationship is de-normalized
into a single fact table, basically materializing the join between
lineitem and orders. One source table to multiple targets transfor-
mation: This transformation is the least common and occurs if, for
efficiency reason, the schema of the operational system is less
normalized than the data warehouse schema. Step 3 properly

1145

manages data that is subject to historical retention (i.e., slowly
changing dimensions). Finally, Step 4 inserts the new fact records
and deletes fact records by date.

5.1 About Business Keys and Surrogate Keys
Contrary to OLTP systems, decision support systems typically
use surrogate keys as primary keys to link fact tables to dimen-
sions. They are usually generated by the database management
system in form of sequential numbers (SEQUENCE) and not
derived from any application data in the database. This has many
advantages for schema management, performance and historic
data management. While preserving uniqueness surrogate keys
protect the database relationships from changes in data values or
database design. Surrogate keys are generally composed of com-
pact data types that might increase performance. Mostly, surro-
gate keys are used to preserve historic data in dimensions by mak-
ing the current dimension entry a historical entry and adding a
new dimension entry for the most current values.

Each dimension in the data warehouse uses a surrogate key
as its primary key, while the tables in the source schema use tradi-
tional primary keys, also referred to as business keys. In addition
to the surrogate key, each dimension contains the business keys of
the corresponding entity of the operational source schema. This is
necessary so that updated rows and transactions from the opera-
tional schema can be mapped to existing data in dimensions. Ad-
ditionally, each dimension that retains historical information con-
tains two date fields, rec_start_date and
rec_end_date, to indicate the date range for which dimen-
sion entries are valid. The most current entry in a history keeping
dimension uses a NULL value in the rec_end_date column.
In order to facilitate the mapping of business keys to surrogate
keys both in fact and dimension tables and the relationships be-
tween tables of the operational schema and the data warehouse
schema, TPC-DS provides views defining the mapping of source
schema tables to target schema tables.
CREATE VIEW item_view as
SELECT next value for item_seq i_item_sk
 ,item_item_id
 ,current_date i_rec_start_date
 ,cast(NULL as date) i_rec_end_date
 ,item_item_description
 ,item_list_price
 ,item_wholesale_cost
 ,i_brand_id ,i_brand
 ,i_class_id ,i_class
 ,i_category_id ,i_category
 ,i_manufact_id ,i_manufact
 ,item_size i_size
 ,item_formulation
 ,item_color
 ,item_units
 ,item_container
 ,item_manager_id
 ,i_product_name
FROM s_item
LEFT OUTER JOIN item ON (item_item_id = i_item_id
 and i_rec_end_date is null);

Figure 12: Item View
As an example Figure 12 shows the Item view, which repre-

sents the data to be loaded into the Item dimension. The refresh
data set is represented by the table s_item. In order to find the
surrogate keys corresponding to the business keys in the s_item
table, the two tables are joined on the item_id (business key).
Since as in real systems, data in the data warehouse can be some-

what out of sync with the operation system, the tables are joined
with an outer-join. In order to obtain the most recent surrogate
key the additional predicate i_rec_end_date is null is
necessary. Since Item is a Type 2 dimension (see next sections), a
new surrogate key is generated by calling the SQL construct
next value for the item sequence (item_seq). The
i_rec_start_date is set to the current date while the
i_rec_end_date is set to null indicating the most recent entry.

Apart from modeling the behavior of real life systems, the
views test different code paths, such as the management of se-
quences, outer-joins and index maintenance. Especially for fact
tables the execution of these views can be very resource intensive
since the source data contains large amounts of data. Although
DBMS specific, indexes on the business keys are probably the
most efficient way of executing this join.
CREATE VIEW ssv AS
SELECT
 d_date_sk ss_sold_date_sk,
 t_time_sk ss_sold_time_sk,
 i_item_sk ss_item_sk,
 c_customer_sk ss_customer_sk,
 c_current_cdemo_sk ss_cdemo_sk,
 ...
 (i_current_price-plin_sale_price)*plin_quantity ,
 plin_sale_price * plin_quantity,
 i_wholesale_cost * plin_quantity,
 i_current_price * plin_quantity,
 i_current_price * s_tax_percentage,
 ...
FROM
 s_purchase left outer join customer on
 (purc_customer_id=c_customer_id)
 left outer join store on
 (purc_store_id=s_store_id)
 left outer join date_dim on
 (cast(purc_purchase_date as date)
 left outer join time_dim on
 (PURC_PURCHASE_TIME = t_time),
 s_purchase_lineitem
 left outer join promo on
 (plin_promotion_id = p_promo_id)
 left outer join item on
 (plin_item_id = i_item_id)
WHERE purc_purchase_id = plin_purchase_id
 AND i_rec_end_date is NULL
 AND s_rec_end_date is NULL;

Figure 13: Store Sales View
Inserting new data into fact tables comprises of two tasks

(see Step 1 and Step 2 in Figure 17). First, data from the refresh
data set is joined to dimension tables to swap the business keys
from the operational system with the most current surrogate keys
from the data warehouse. Additionally, since the operational sys-
tem normalizes data for sales fact tables into two tables, Lineitem
and Orders, these two tables need to be joined (see Step 1 in
Figure 11). As an example Figure 13 shows the view for the
Store_Sales fact table. Because of space constraints some of the
columns are omitted. The fact table rows are built by joining two
tables from the operational system: s_purchase and
s_purchase_lineitem on their purchase id (see where
clause). In order to obtain the surrogate keys for the dimen-
sions time, date, item, customer and customer_demographics,
these rows are subsequently joined using outer-joins on their
business key to their corresponding dimensions. Finally, there are
two additional predicates on the rec_end_date for the Type 2
dimensions.

1146

5.2 Fact Table Maintenance
Fact tables hold business facts (a.k.a. measures) and foreign keys
(surrogate keys), which refer to dimension tables. The business
facts are collected in the operational system of a company as or-
der occur, resulting in large amounts of data to be inserted and
deleted periodically from fact tables. Corresponding to these two
operations, TPC-DS defines insert and delete data maintenance
functions for fact tables.

Step 2 (see Figure 17) inserts the data from the view into the
fact table. Depending on the DBMS implementation this opera-
tion can be implemented as an insert with append resulting in bulk
inserts at the end of the database.
insert into store_sales (select * from ssv);

Figure 14: Store Fact Table Insert Operation (Step 2)
The Algorithm of deleting old data from fact tables depends

on the type of fact table. Data is deleted from sales and the inven-
tory tables by specifying sales date ranges. For instance, “delete
all sales that occurred between data x and date y. Returns can
occur within three months of their sales, therefore, return data
cannot be deleted by simply specifying date ranges in the returns
table. Instead deletes of return data are triggered by deletes of
their corresponding sales (see Figure 17).
DELETE FROM store_sales
WHERE ss_sold_date_sk IN
 (SELECT d_date_sk
 FROM s_del_date_m,date_dim
 WHERE d_date BETWEEN Begin and End));

Figure 15: Store Sales Delete Data Maintenance Function
DELETE FROM store_returns
 WHERE sr_ticket_number IN
 (SELECT ss_ticket_number FROM store_sales
 WHERE ss_sold_date_sk IN
 (SELECT d_date_sk FROM s_del_date_m,date_dim
 WHERE d_date BETWEEN Begin and End));

Figure 16: Store Return Delete Data Maintenance Function

Figure 17: Logical View of Insert and Delete Operations

The Delete and Insert operations complement each other.
That is, the same amount of data that is deleted is inserted into the
same date range. This guarantees that the first and the second runs
of the Performance test are executed against the same amount of
data. The intention of these operations is to exercise both range
and scattered deletes. For instance, the number of sales data

blocks that need to be accessed may be minimized if sales data is
clustered on sales date ranges. In the extreme case if data is finely
partitioned by date, a partition drop operation can accomplish an
entire delete operation. Contrary, the return delete operation are
always scattered since returns can occur in a three month window
after their corresponding sales.

5.3 Dimension Maintenance
Dimension tables contain attributes that further detail the business
facts stored in fact tables. They are used to constrain and group
data during complex queries. Since dimensions contain attributes
that may change over time, Kimball [10] refers to them as Slowly
Changing Dimensions (SCD). Among the four methodologies of
dealing with the management of SCD TPC-DS concentrates on
Type 0, 1 and 2.

Type 0 is used for those dimensions that never or very infre-
quently change data. In TPC-DS; that is, no Type 0 data changes
during the benchmark after the initial load. Date, Time and Rea-
son are examples for Type 0 dimensions.

Existing data in Type 1 dimensions (non-history keeping) is
overwritten with new data, and therefore this type of dimension
does not track historical data at all. This is most appropriate when
correcting certain types of data errors, such as the spelling of a
name. TPC-DS defines the algorithm for dealing with Type 1
dimensions as follows: For every row in the refresh data set the
corresponding row in the data warehouse dimension needs to be
identified. This is done by comparing the business key of the
refresh data set with the business key of the data warehouse
dimension. Then all non primary key columns are updated with
the new data. An example of a Type 1 dimension in TPC-DS is
Promotion.

Type 2 dimensions (history keeping) track historical data by
creating multiple records with separate keys. The algorithm of
maintaining Type 2 dimensions is slightly more complex then that
of Type 1 dimensions because every entity may be represented in
the data warehouse with multiple rows, i.e. historical entries.
Hence, for every row in the refresh data set the business keys
must match and the rec_end_date column must be NULL,
corresponding to the most recent existing record. After the
rec_end_date column of the matching row is set to the cur-
rent system date a new row is inserted with the data in the refresh
data set and a system generated new surrogate key. An example
for a history keeping dimensions is the Item table.
UPDATE item set i_rec_end_date = SYSDATE
WHERE i_item_id IN (SELECT i_item_id FROM itemv)
 AND i_rec_end_date IS NULL;

INSERT INTO item (SELECT * FROM itemv);

Figure 18: Item Data Maintenance Function
Figure 18 shows one implementation of the data maintenance
function for the Type 2 dimension Item. It consists of two steps.
In the first step the i_rec_end_date of those rows, which
contain the current dimension version, are set to the current sys-
tem date. This is done with an UPDATE statement combined with
an IN clause selecting all rows from the item view (see Figure
12). This causes random reads from the dimension tables, as the
rows to be updated are not contiguous. In the second step all rows
from the item view are inserted into the item dimension. If no
clustering is defined on the item dimension, this step can be per-
formed as an append making this a bulk insert.

1147

6. METRIC ANALYSIS
Because TPC benchmark publications are compared by their pri-
mary metric, it is important to the success of a TPC-DS that its
primary metric is well understood, be aligned with typical DSS
businesses and be “unbreakable”. Undoubtedly, the primary met-
ric defines the focal point of the performance work of any given
benchmark publication. It is the intention of benchmark to define
this focal point to encourage performance tuning in certain areas.
Hence, only those areas of the workload that give the largest “re-
turn of investment” will be tuned and those that don’t will be
neglected. Ultimately, the goal is to increase the primary metric to
beat the competition. By unbreakable we mean that the use of no
single technology can be exploited to disproportionably increase
the metric; this occurred with the primary metric of the former
TPC-D benchmark when materialized views were introduced at
the end of the nineties.

Since no elapsed times for TPC-DS are publicly available we
analyze the impact of various performance tuning scenarios by
calculating TPC-DS’s primary metric using elapsed times from a
published 100GByte TPC-H benchmark. We assume the follow-
ing statistics: with minimal auxiliary data structures, as allowed
by TPC-H (indexes on primary/foreign keys and date columns
and horizontal partitioning) and run sequentially there are 32 per-
cent short running queries (4s), 50 percent medium long running
queries (17s) and 18 percent long running queries (102s); the load
time is 3600 seconds; and one execution of all data maintenance
functions is 390 seconds. Using these elapsed times, the different
elements of TPC-DS metric can be calculated as:

TQR1=TQR2=S*99*(0.32*4+0.5*17+0.18*102)=S*2785.86
TDM=S*390, TLoad=3600
S stands for the number of streams, e.g. concurrent users

The scenarios are defined as: Scenario 1 analyses the impact of
performance tuning on the 3 major parts of the benchmark,
namely Database Load, Query Run and Data Maintenance (ELT);
Scenario 2 shows how the use of materialized views can impact
the metric; Scenario 3 shows the impact the number of streams
(number of simulated users) has on the metric.

6.1 Scenario 1: Performance Tuning on Data-
base Load, Queries and Data Maintenance
In this test we analyze the impact to the metric of performance
improvement in the three disciplines of the TPC-DS workload:
Database Load, Queries and Data Maintenance. Figure 19 shows
one graph for the Database Load and one for Data Maintenance.
The Query discipline is subdivided into three graphs, one each for
short, medium and long running queries. Each graph shows the
impact of performance improvements in each of the disciplines to
the primary metric (QphDS) as a percentage of our initial assump-
tion. 100% means no performance improvements and 90% means
10% performance improvements, etc. No side affects of perform-
ance improvement are considered. That is, only pure code-length
or hardware improvements, e.g. CPU speedup are considered. No
performance improvements such indexes or materialized views
are considered that might have an impact to the elapsed times of
other phases of the benchmark, i.e. Load or Data Maintenance.
Hence, the metric can be expressed as follows:

() 36360102*18.017*5.04*32.02
23600*@

++++
= SFSFQphDS

The first graph in Figure 19 (diamond) shows that improving
the load (TLoad) down to ten percent of its original elapsed time

(from 3600s to 360s) has a marginal effect on the primary metric.
In this scenario we use seven concurrent users (streams). Hence,
only seven percent of the load time is accounted for in the pri-
mary metric. Similarly, improving short running queries or the
data maintenance (small and large square) show little impact if
improved down 10 percent of their original elapsed times. How-
ever, improving medium or long running queries (triangle and
cross graphs) have a large impact to the metric. This is an ex-
pected behavior of the arithmetic mean. However, note that in this
scenario performance improvements of queries are assumed to
have no impact on the elapsed times of the database load and data
maintenance. That is, they are assumed without the use of auxil-
iary data structures but with performance improvements such as
optimizer enhancements or faster hardware. It is assumed that
performance improvements of this magnitude are not likely to
occur within the near future without the use of auxiliary data
structures. Also, note that the larger the scale factor has a higher
minimum number of streams, which will amplify the impact of
the Database Load and Data Maintenance parts of the workload.

Figure 19: Improving Load, Queries and Data Maintenance

6.2 Scenario 2: Use of Materialization
Materialization techniques commonly used in modern decision
support systems to speed up frequently used reporting queries.
However, an unconstrained use of these techniques could poten-
tially dramatically inflate the metric. As explained in sections 3
and 4, the use of materialization is restricted to the catalog sales
channel. In this scenario, as an upper bound, we analyze the im-
pact of materializing all reporting queries by reducing their
elapsed time to one second. The cost for their materialization is
counted in the load time and data maintenance phase as follows:
The elapsed time for creating one materialized view per query is
counted in the database load. The elapsed time is the original
query elapsed time times a factor expressing their additional cost,
referred to as the materialization cost factor (MCF), which we
vary between 0.25 and 10 to capture a variety of cost models. An
MCF of 0.25 signifies a materialization overhead of 25 percent
and 10 signifies a 10 x overhead. The same overhead is added to
the data maintenance phase.
Figure 20 shows the impact of materializing all reporting queries
and amortizing their cost by running up to 100 streams. For each
of the cost factors (MCF) the metric first increases as the number
of streams increases. However, since the Load and Data Mainte-
nance costs also increase with the number of streams, the metric
decreases with very large number of streams. The maintenance
costs of the materialized views or summary tables (MCF) will
determine how steep the metric increases and at how many

1148

streams it peaks. The higher the MCF value is the slower is the
increase and the sooner is the peak.

Figure 20: Metric Increase with Materialization

6.3 Scenario 3: Increasing Number of Streams
In this test we analyze the impact of running a TPC-DS bench-
mark with various numbers of streams. While the minimum num-
ber of streams for a given scale factor is set by the TPC-DS speci-
fication, the maximum number of streams is not limited. Assum-
ing that one query stream, when run in isolation, takes T1 seconds
and that the systems scales linearly with the number of streams
then, executing S streams takes S*T1 seconds. Additionally, as-
suming that the data maintenance functions scale linearly, i.e.
each data maintenance, run on any update set, takes the same
amount of time, e.g. T2, then S executions take S*T2. Hence, we
can rewrite the metric canceling out the stream variable S from
the numerator and denominator:

()TT LoadDMT
SFSFQphDS

*01.01*2
1983600*@
++

=

This metric is invariant from the number of streams. This is an
important characteristic of the metric, because if the system scales
linearly one should not be able to simply run with more streams to
improve the performance metric. However, if the system scales
super-linearly, i.e. it can schedule query execution such that que-
ries in different streams can benefit of each other, e.g. piggy-
backing on IO patterns, join operations or intermediate results,
then the metric can be increased. This type of optimization is both
legal and desirable.

Figure 21: Metric Increase with Number of Streams

Figure 21 shows how the metric increases when the actual number
of executed streams is reduced by a certain percent. That is, the
first data point at 100% executes all streams, while at 50% the
system only needs to execute 50% of the streams.

7. CONCLUSION
The TPC-DS benchmark is expected to be the next generation
industry standard decision support benchmark, eventually replac-
ing TPC-H. The benchmark is in the Formal Review phase.The
TPC expects to receive comments and feedback from the industry
and academia. The TPC-DS committee will review every com-
ment carefully as this benchmark will be used by the hardware
vendors and database vendors to demonstrate their capabilities
and by customers as an important factor in purchase decisions.

As with prior TPC benchmarks, this benchmark workload
will help accelerate development of hardware and database tech-
nologies to satisfy the requirement of modern data warehouse
applications and also encourage research and development in
optimization techniques in highly complex workloads.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge Mike Nikolaiev, Ray
Glasstone, David Adams, Bryon Georgson, Murali Krishna,
Umesh Dayal and Christopher Buss for their comments and feed-
back and the members of the TPC-DS committee, especially Vin-
cent Carbon, Susanne Englert, Douglas Inkster, Mary Meredith,
Sreenivas Gukal, Doug Johnson, Lubor Kollar, Murali Krishna,
Robert Lane, Larry Lutz, Priti Mishra, Juergen Mueller, Robert
Murphy, Doug Nelson, Ernie Ostic, Gene Purdy, Haider Rizvi,
Bryan Smith, Eric Speed, Cadambi Sriram, Jack Stephens, John
Susag, Tricia Thomas, Kwai Wong and Guogen Zhang.

9. REFERENCES
[1] John M. Stephens, Meikel Poess: MUDD: a multi-

dimensional data generator. WOSP 2004: 104-109
[2] Meikel Poess, John M. Stephens: Generating Thousand

Benchmark Queries in Seconds. VLDB 2004: 1045-1053
[3] Meikel Poess, Raghunath Othayoth: Large Scale Data

Warehouses on Grid: Oracle Database 10g and HP ProLi-
ant Systems. VLDB 2005: 1055-1066

[4] Meikel Poess, Bryan Smith, Lubor Kollár, Per-Åke Larson:
TPC-DS, taking decision support benchmarking to the next
level. SIGMOD Conference 2002: 582-587

[5] Meikel Poess, Chris Floyd: New TPC Benchmarks for Deci-
sion Support and Web Commerce. SIGMOD Record 29(4):
64-71 (2000)

[6] Michael Stonebraker et. al.: C-Store: A Column-oriented
DBMS. VLDB 2005: 553-564

[7] Naveen Reddy, Jayant R. Haritsa: Analyzing Plan Diagrams
of Database Query Optimizers. VLDB 2005: 1228-1240

[8] Public release of TPC-DS (v0.32) preliminary draft:
http://www.tpc.org/tpcds/default.asp.

[9] Raghunath Othayoth, Meikel Poess: The Making of TPC-DS.
VLDB 2006: 2046-1058

[10] Ralph W. Kimball, Warren Thornthwaite, Laura Reeves and
Margy Ross: The Data Warehouse Lifecycle Toolkit, New
York, NY: John Wiley and Sons, 1998

[11] Pricing http://www.tpc.org/pricing/spec/ Price_V1.0.1.pdf
[12] TPC-D Version 2.1: http://www.tpc.org/tpcd/default.asp
[13] TPC-DS Draft Version: http://www.tpc.org/tpcds/tpcds.asp
[14] TPC-H Version 2.6.0: http://www.tpc.org/tpch/default.asp
[15] US Census Bureau, Unadjusted and Adjusted Estimates of

Monthly Retail and Food Services Sales by Kinds of Busi-
ness:2001, Department stores (excl.L.D) 4521.

[16] William H. Inmon: EIS and the Data Warehouse, Data Base
Programming/Design, November 1992.

1149

