
Converting TPC-H Query
Templates to use DSQgen

for Easy Extensibility

John M. Stephens, Gradientsystems

Meikel Poess, Oracle Corporation



TPC-H

• TPC-H has been a very successful
benchmark for the TPC
– 147+ publications1

– 10+ hardware systems1

– 7+ database systems1

• TPC-H’s tools (dbgen/qgen) are 15 years
old

• In order to add queries or modify queries
code changes to qgen are necessary

1 as of June 2009



How Ad-Hoc Queries are
Implemented

• TPC-H defines query templates instead of
queries

• Qgen substitutes scalar variables randomly
during benchmark runtime with random
seed

• Seed is determined at the end of the load
time (second granularity)

Load Power Throughput



Query Template Example:
TPC-H’s Query 6

SELECT SUM (l_extendedprice*l_discount)

FROM lineitem

WHERE l_shipdate>=date'[DATE]'

AND l_shipdate<date'[DATE]'+interval'1'year

AND l_discount between [DISCOUNT] - 0.01

and [DISCOUNT] + 0.01

AND l_quantity < [QUANTITY];



Query Template Example:
TPC-H’s Query 6

SELECT SUM (l_extendedprice*l_discount)

FROM lineitem

WHERE l_shipdate>=date'10-1-1996'

AND l_shipdate<date'10-1-1996'+interval'1'year

AND l_discount between 0.05 - 0.01

and 0.05 + 0.01

AND l_quantity < 300;



Current Query Generator
Qgen

• Data relationships are hard-coded in qgen

• Substitution parameters are hard-coded in
qgen

 query modifications require code changes

 additional queries require code changs

 testing, bug fixing etc.



DSQgen

• Originally developed for TPC-DS

• Query templates are defined in an
extendable query language

• The definitions of substitution tags are
included in query template

• Previous publications
– Meikel Poess, John M. Stephens: Generating Thousand

Benchmark Queries in Seconds. VLDB 2004: 1045-1053

– Meikel Poess: Controlled SQL query evolution for decision
support benchmarks. WOSP 2007: 38-41



DSQgen’s Template Language

• A template consists of two parts:
– substitution tag definitions

– SQL Text

• Substitution tag definition can be:
– random number between an lower and

upper bound

– list of items

– unique list of items



Substitution Types

• Random Number Substitution
– order_quantity = random (1, 10, uniform);

• Random String Substitution
– color=TEXT({“brown”,6},{“black”,3},{“grey”,1}

,{“pink”,1});

• List Operators LIST,ULIST
– colors=LIST(TEXT({“brown”,6},{“black”,3}

,{“grey”,1} ,{“pink”,1}),2);

– colors=ULIST(TEXT({“brown”,6},{“black”,3}
,{“grey”,1} ,{“pink”,1}),2);



DSQgen’s Template Language

• Built-In Functions
_SCALE

_SEED

_QUERY

_TEMPLATE

_STREAM

_LIMITA,_LIMITB,_LIMITC

_LIMIT



TPC-H Queries can be Divided
into 5 Major Types

• Type 1: randomly selects one or more
numbers from a dense interval.

• Type 2: randomly selects one or more
strings from a list of possible items.

• Type 3: randomly selects a date.

• Type 4: selects the scale factor of the
database being queried

• Type 5: selects the number of rows to be
returned by the top most SQL statement.



Example: Query 16
• SELECT p_brand ,p_type ,p_size ,count(distinct

ps_suppkey) as supplier_cnt
FROM partsupp, part
WHERE p_partkey = ps_partkey
AND p_brand <> ':1'
AND p_type not like ':2%'
AND p_size in (:3, :4, :5, :6, :7, :8, :9, :10)
AND ps_suppkey not in (SELECT s_suppkey

FROM supplier
WHERE s_comment like

'%Customer%Complaints%’)
GROUP BY p_brand ,p_type, p_size
ORDER BY supplier_cnt desc, p_brand, p_type,
p_size;

(p_brand) is substituted
as Brand#MN, where M
and N are two single
character strings
representing two numbers
randomly and
independently selected
within [1 .. 5];

(p_type) is made of three syllables:
1) STANDARD,SMALL,MEDIUM,LARGE,EC

ONOMY,PROMOT

2) ANODIZED,BURNISHED,PLATED,POLIS
HED,BRUSHED

3) TIN,NICKEL,BRASS,STEEL,COPPER

(p_size) are eight
randomly selected as a
set of different values
of [1...50];



Query 16 in DSQGEN Syntax
DEFINE PBRAND_A = RANDOM(1,5,uniform);
DEFINE PBRAND_B = RANDOM(1,5,uniform);
DEFINE PTYPE_A=TEXT({"STANDARD",1},{“SMALL",1},{“MEDIUM",1},{“LARGE",1}

,{“ECONOMY",1},{“PROMO",1});

DEFINE PTYPE_B=TEXT({“ANODIZED",1},{“BURNISHED",1},{“PLATED",1}

,{“POLISHED",1},{“BRUSHED”,1});

DEFINE PTYPE_C=TEXT({“TIN",1},{“NICKEL",1},{“BRASS",1},{“STEEL",1},{“COPPER",1});

DEFINE SIZE = ULIST(RANDOM(1,50,uniform),8);

SELECT p_brand ,p_type ,p_size
,count(distinct ps_suppkey) as supplier_cnt

FROM partsupp ,part
WHERE p_partkey = ps_partkey
AND p_brand <> ‘BRAND#[PBRAND_A][PBRAND_B]'
AND p_type not like '[PTYPE_A] [PTYPE_B] [PTYPE_C]%'
AND p_size in ([SIZE.1],[SIZE.2],[SIZE.3],[SIZE.4]

,[SIZE.5],[SIZE.6],[SIZE.7],[SIZE.8])
AND ps_suppkey not in (SELECT s_suppkey

FROM supplier
WHERE s_comment like

'%Customer%Complaints%’)
GROUP BY p_brand ,p_type ,p_size
ORDER BY supplier_cnt desc ,p_brand ,p_type, p_size;



Modified Query 11 of TPC-H

DEFINE NK = random (0,31, uniform);
DEFINE AGG= text({“sum”,1},{“min”,1}

,{“max”,1});

SELECT ps_partkey
,[AGG](ps_supplycost * ps_availqty)

as value
FROM partsupp,supplier
WHERE ps_suppkey = s_suppkey

AND s_nationkey = [NK]
GROUP BY ps_partkey;



Modified Query 3

DEFINE SHIPDATE = random(1,31,uniform);
DEFINE LIMIT=10;

DEFINE COL=text({“l_quantity”,1},{“l_discount”,1}
,{“l_extendedprice”,1},{“l_tax”,1});

[_LIMITA] select [_LIMITB] l_orderkey
,sum([COL]), o_orderdate, o_shippriority

FROM customer, orders, lineitem
WHERE c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < date '1995-03-[SHIPDAY]'
AND l_shipdate > date '1995-03-[SHIPDAY]'

GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY [COL] desc, o_orderdate
[_LIMITC];



Summary

• We demonstrated that

– all existing 22 TPC-H queries can be converted
to use DSQgen

– Conversion has no impact on the viability or
comparability of existing TPC-H results

– TPC-H queries can be enriched without code
changes

– New queries can be easily added without any
code changes


