How to Advance TPC Benchmarks with Dependability Aspects

IPCTC 2010 Raquel Almeida¹, Meikel Poess², Raghunath Nambiar³, Indira Patil⁴, <u>Marco Vieira¹</u>

- ¹ University of Coimbra, Portugal
 ³ Cisco Systems, Inc., USA
 USA
- ² Oracle Corporation, USA
 ⁴ Hewlett Packard Company,

rrute@dei.uc.pt, meikel.poess@oracle.com, rnambiar@cisco.com, Indira.Patil@hp.com, mvieira@dei.uc.pt TPCTC 2010 Singapore

Outline

- Our challenge
- The dependability benchmarking concept
- Extending the individual spec of TPC benchmarks
- Unified approach for augmenting TPC benchmarks
- Conclusion and Future steps

We're here to challenge TPC!!!

Is computer benchmarking only about performance?

■NO!!!

- e.g. nowadays most systems need to guarantee high availability and reliability
 - It is mandatory to shift the focus from measuring performance to the measurement of both performance and dependability

Don't computers fail?

What is the impact of failures into the system?

The Dependability Benchmarking Concept

Procedures to measure both the dependability and performance of systems or components

- Compare systems or components from a dependability point-of-view:
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability

Components of a dependability benchmark

Procedure and rulesExperimental setup

How to Extend TPC Benchmarks?

- Take advantage of the existing ACID tests
 - Extend those tests for measuring dependability aspects

Two approaches:

- Extending each individual TPC specification
- Unified approach for augmenting TPC benchmarks
 - Similar to TPC-Energy

Let's then take a look at each approach...

Option #1: Extending each TPC Spec

Two alternatives:

- Modifying each specification
 - To include additional dependability related clauses
- Defining an addendum to the specification
 - Specifies the additionally clauses in an independent way

Pros & Cons:

- Metrics and faultload can be tailored to the domain
 - Allows considering the most relevant metrics and faults
- Requires repeating the definition and approval process for each benchmark
 - May be a long-term endeavor

Components...

Setup, workload, and performance metrics from TPC specifications

Metrics

- Characterizing performance in the presence of faults and dependability attributes
- Can be different for each benchmark

Faultload

- Based on the extension the existing ACID tests with operator faults
- Can be different for each benchmark

Metrics

Baseline performance metrics

- The ones that already exist in the TPC benchmarks
- Performance metrics in the presence of faults
 - Characterize the impact of faults on the transaction execution
 - Similar to baseline performance metrics
- Dependability related metrics
 - Evaluate specific aspects of the system dependability
 - Many possible attributes
 - Should be a small with the most relevant ones

Faultload

Three major types of faults:

- Operator faults
- Software faults
- Hardware faults
- Studies point operator faults as the most important cause for computer system failures
- Augment the ACID tests by including situations that emulate operator mistakes
 - e.g., drop table, delete file, shutdown server

Benchmark example: DBench-OLTP

- Compare db-centric transactional systems
- Follows the style of the TPC benchmarks
 - (Customized) TPC-C workload
- Structured in Clauses:
 - Clause 1 Preamble
 - Clause 2 Benchmark Setup
 - Clause 3 Benchmarking Procedure
 - Clause 4 Measures
 - Clause 5 Faultload
 - Clause 6 Full Disclosure Report

Option #2: Unified Approach (1)

Independent of the TPC benchmark

- Tests and methodology that apply to many benchmarks
- Successfully demonstrated by the TPC-Energy spec

Advantages

- define-once-use-many-times" cost-savings
 - In terms of time in defining and implementing the specification
- Easier for the sponsor to implement it for multiple cases
- Specification easier to maintain and to extend for future benchmarks
- Promotes comparison across vendors
 - Possibly even across benchmarks

Option #2: Unified Approach (2)

Challenges:

- Difficult to work within the existing constraints
- Additions to benchmarks have to be done carefully
- Constraints limit the scope of dependability metrics
- Two alternatives:
 - Dependency Level Approach
 - Dependability as a set of features that a system possesses
 - Tags the existence of dependability features
 - Dependability Metric Approach
 - Tests that "measure" dependability (secondary metric)
 - Reports existence of features and measures their performance

Dependency Level Approach

- Set of tests that must be executed to proof the existence of dependability functionalities
- Reporting metric, called "Dependency Level"
 - Number indicating how "dependent" a system is, e.g.:
 - Level 1: system is "available" through the load of the database and performance runs in the benchmark
 - Level 2: Level 1 + ACID tests demonstrated on the test DB
 - Level 3: Level 2 + Recovery times for system hardware, operating system reboot and database recovery reported during the crash durability test
 - • •
 - A higher number indicates a higher level of dependability of the system

Dependability Metric Approach

- Secondary metric for all TPC benchmarks
- Tests would include the definition of the workload or faultload
- Defining each test includes the following steps:
 - 1. Identify dependability feature to be measured
 - 2. Define a test that adequately assesses the feature
 - 3. Define the measurement interval for the test
- Metric combines the measurements of all tests
 e.g., simply a sum or an average, weighted or otherwise

Example: Protection Against User Errors

Test added to the existing ACID tests

- Drop a small table in the benchmark
 - "small" would need to be defined
- Measure the time it takes to drop and restore the table
 - i.e., enable the database to use the table
- Does not require a change to the schema or workload
- The test can be specified by using a small table in the schema of each benchmark
 - The choice of the table can be specified in terms of its minimum size

Conclusions

- Discussed different approaches for extending TPC benchmarks with dependability measures
- Key aspect for the future of the TPC standards
 - Industry demands metrics and methodologies for measuring dependability of transactional systems
- Two different approaches:
 - Augmenting each TPC benchmark in a customized way
 - Pursuing a unified approach
- Both approaches include the extension of existing ACID tests

Future Steps

- TPC should envisage the inclusion of dependability metrics in its benchmarks
- An incremental approach could be followed:
 - Starting from a single key metric
 - Apply the unified approach to disseminate the concept and foster the interest of vendors and purchasers
 - Extended to include more metrics
 - Augment specific TPC benchmarks to include the most relevant dependability metrics

We will pursue this goal!

Questions & Comments

- Raquel Almeida¹, Meikel Poess², Raghunath Nambiar³, Indira Patil⁴, <u>Marco Vieira¹</u>
- ¹ University of Coimbra, Portugal
 - ² Oracle Corporation, USA
- ³ Cisco Systems Inc, USA

⁴ Hewlett Packard Company, USA

rrute@dei.uc.pt, meikel.poess@oracle.com, rnambiar@cisco.com, Indira.Patil@hp.com, mvieira@dei.uc.pt