Transaction Performance VS.
 Moore's Law

Meikel Poess, Oracle Corporation
Raghunath Nambiar, Cisco Systems, Inc.

oraclé

Agenda

- Motivation
- TPC-C Benchmark
- Moore's Law vs. Transaction Performance
- Moore's Law vs. Cost for Transaction Performance
- Conclusion

TPC-C Benchmark

- Approved in 1992 as successor ofTPC-B
- Yardstick for comparing transaction processing performance
- Complete system performance
- Over 750 results
- All major server vendors
- All major and database platforms
- Variety of architectures

TPC-C Benchmark Configuration

- Complex configurations
- 3-tier architecture
- Powerful database server as back-end

$3 \times$ IBM Power 780 Server

Moore's Law

TPC-C Metric [tpmC]

- TPC-C primary performance metric:Transactions per minute [tpmC]
- TPC-C price performance metric is: System Cost +3 year maintenance divided by transactions per minute [$\$ / \mathrm{tpmC}$]
- System size range widely
- Single, one processor server with few disks to large clusters with thousands of disks
- Consequently performance varies from hundreds to millions of tpmC
- Normalized performance metric $\mathrm{NtpmC}=\mathrm{tpmC}$ divided by the number of processors (sockets)
Average NtpmC per Year

Average NtpmC per Year

$\stackrel{\square}{8}$	8	8

Transaction performance vs. Moore's Law, Milestones, 1993 to 2010

NTpmC for Years 1993 to 2010

TPC-C Price-Performance Trend

Conclusion

- TPC-C performance improvements over 18 years are remarkably similar to Moore's Law
- TPC-C price-performance also follows Moore's Law
- Topics of debate
\rightarrow Can TPC-C performance be attributed solely to processor improvements?
\rightarrow Do we need TPC-C benchmarks if performance can be predicted so easily?

Conclusion Cont’

- No, because TPC-C systems:
- Complete systems that involve many components (Server, Storage, Network, Software)
- The increase in processor speed causes challenges:

1. Performance of other component needs to be increased
2. Components whose performance lagged behind need to be replicated
3. Software has to deal with more concurrency

Conclusion Cont’

1. Performance of other components need to be increased, e.g.

- System BUS
- Memory (Capacity and performance)
- IO Subsystem (Controllers, Arrays, Disk Drives, Drivers and Firmware)

2. Components whose performance lagged behind need to be replicated, e.g.

- Disk drives: disk per processor increased from 12 to over 100

3. Software (OS,DBMS) has to deal with more concurrency, e.g.

- Multiple Cores
- Large user counts
- Semaphore contention
- Locking

