TPC-ENERGY
LESSONS LEARNED IN
PRACTICE

Erik Young, Paul Cao, Mike Nikolaiev
Performance Team
Sept 2010

TPCTC 2010
Singapore
TPC-ENERGY SPECIFICATION

The TPC-Energy specification augments existing TPC Benchmark Standards.

TPC-Energy provides energy metrics in the form “Watts per performance”, e.g. watts/tpmC.
TPC-ENERGY STAGES

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Execution & Validation</th>
<th>Tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark Configuration</td>
<td>The Validation Run</td>
<td>The Tuning Process</td>
</tr>
<tr>
<td>Reported Energy Configuration</td>
<td>Report Generator</td>
<td>Performance, Energy, Price combined metric</td>
</tr>
<tr>
<td>Power Measuring Unit</td>
<td>Power Analyzer Calculations</td>
<td>Scaled PEP Volume Application</td>
</tr>
<tr>
<td>PMU Substitution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Analyzer Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Measuring System Configuration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAGE ONE

Configuration
TPC-ENERGY
CONFIGURATION

– Benchmark Configuration
– Reported Energy Configuration
– Power Measuring Unit
– PMU Substitution
– Power Analyzer Configuration
– Energy Measuring System Configuration
BENCHMARK CONFIGURATION

STAGE ONE

TPC-E Benchmark Configuration

TPC-C Benchmark Configuration

1 x HP ProLiant DL585 G7 w/2 3GHz or 512GB RAM
1 x SMART Array P410i SAS RAID Controller
1 x SMART Array P812 SAS RAID CHP StorageWorks
1 x FC1242 Dual Channel 4GB PCIe-e HBA
9 x LSI 9200_8E HBA, and 2 x 146GB 10K SFF-SAS Drives in Internal Bay

32 RFE's simulating 979,200 PCs

1 x HP 9424 Rack containing 9 x D2700 StorageWorks Enclosures with 20 x 120GB each
4 x MSA 2070 StorageWorks Enclosures containing 25 x 300GB 10K SFF SAS each
1 x MSA2231fc with 24 x 146GB 10K drives and 2 x MSA70 with 22 drives each

24 x HP ProLiant DL360 G7

© Copyright 2010 Hewlett-Packard Development Company, L.P.
REPORTED ENERGY CONFIGURATION

STAGE ONE

The Reported Energy Configuration (REC) consists of all the components that participate in the energy measuring process and may be divided into subsystems, consisting of one or more Power Measurable Units (PMU).

- Database Server Subsystem
- Storage Subsystem
- Application Server Subsystem
- Miscellaneous Subsystem
POWER MEASURING UNIT

STAGE ONE

The TPC-Energy specification, Clause 0.4, defines a Power Measurable Unit (PMU) as a component or collection of components of the REC which can be independently measured with a power analyzer.

- The ArrayOne PMU is a component of the DL380G7 REC’s Storage Subsystem
- The ArrayOne PMU is the result of the physical (i.e. electrical) limitations in the number of units which can be combined as a composite PMU
PMU SUBSTITUTION

STAGE ONE

The TPC-Energy specification, Clause 3.6 provides a methodology for calculating energy for PMU’s which are not measured or substituted.

- At least two equivalent PMUs must be included in the measured configuration REC.
- The Auditor selects two PMUs from the measured configuration to be measured for the extrapolation calculation.
- The measured PMU’s energy must be less than 10% variance to be considered equivalent.
- The energy consumption value used for each of the unmeasured PMUs is the value of the highest reading of the measured PMUs.
- The total energy consumed for the Priced Application servers = the measured PMU’s + the energy calculated for the unmeasured PMUs.

\[
(24 \times 125.20\text{watts}) + 125.20\text{watts} + 119.86\text{watts} = 3249.86\text{watts}
\]
POWER ANALYZER CONFIGURATION

STAGE ONE

1st Set Power Analyzer Power Range

\[P_{\text{rng}} = \text{PowerRange} = \text{VoltageRange} \times \text{CurrentRange} \]
\[V_{\text{rng}} = \text{VoltageRange} = 300 \ \text{volts} \]
\[I_{\text{rng}} = \text{CurrentRange} = 20 \ \text{Amperes} \]
\[P_{\text{rng}} = 300 \ \text{volts} \times 20 \ \text{Amperes} = 6000 \text{watts} \]

2nd Connect Power Analyzer to Controller

3rd Connect the Benchmark Components

© Copyright 2010 Hewlett-Packard Development Company, L.P.
ENERGY MEASURING SYSTEM CONFIGURATION

STAGE ONE

The TPC-Energy Clause 4.1, defines the Energy Measuring System (EMS). It is the TPC provided software package designed to facilitate the implementation of TPC-Energy measurements. It consists of 3 software modules

- **Energy Measuring System Controller**
 - orchestrates the various components involved in TPC-Energy measurements

- **Power Temperature Daemon Manager**
 - synchronize, format, log, and forward power or temperature data received from the PTD to the EMSC

- **Power Temperature Daemon**
 - communicates directly to the Power Analyzer or Temperature Probe to obtain the readings
TPC-ENERGY
EXECUTION & VALIDATION

– The Validation Run
– Report Generator
– Power Analyzer Calculations
THE VALIDATION RUN

STAGE TWO

The Validation run typically involves auditor verification which of course ensures the run is compliant and reportable. There are several hardware and software verification criteria, below is an example of one of the validation checks.

Power Analyzer

Auditors ensure the values provided by the Power Analyzer and PTDM are identical and that the PTDM names and values seen by the EMSC are correct.
REPORT GENERATOR
STAGE TWO

The Energy Measuring System’s Report Generator (rgen) is a binary executable that produces standardized reports derived from the configuration and measurement data extracted from the XML logs recorded by the PTDM.

- The “Total Energy” is one of the more important values. It’s used in the Power Analyzer Accuracy Calculations

```
+-------------------------------------------------------++
+                                                       ++
+                                      – The "Total Energy" is one of the more important values. It's used in the Power Analyzer Accuracy Calculations +
+                                                       ++
/+ Starting Rec Time: 2010-06-16T13:59:09.000 +
/+ Ending Rec Time: 2010-06-16T14:09:09.000 +
/+ Maximum Sample: 1.000 Seconds +
/+ Maximum Jitter: 0.000 Seconds +
/+ Records Processed: 601 out of 32658 +
/+ Sample Rate: 1000 millisseconds +
/+ Time Sync Delta: 0.000 Seconds +
/+ Total Energy : 413859.9 Watt-Seconds +
```

- The minimum temperature is also very

```
+---------------------------------------------------------------------------------
+ Average    Minimum    Peak
+ -------------  -------------  -------------
+/ Temperature:  20.56     20.41     20.88 +
+/ Relative Humidity: 42.35     41.00     43.00 +
+---------------------------------------------------------------------------------
```
ERROR: stackunderflow
OFFENDING COMMAND: d

STACK:

[/.notdef /endash /T /h /e /space /h /r /a /y /O /n /P /M /U /i /s /c /o
 /m /p /t /f /D /L /three /eight /zero /G /seven /R /E /C /quoteright /S
 /g /u /b /l /parenleft /period /parenright /w /d /bullet /v /hyphen /z
 /comma /quotedblleft /I /less /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /
 .notdef /.notdef /.notdef /.notdef /]