
TPC-H Analyzed
Hidden Messages and Lessons

Learned from an Influential Benchmark

Peter Boncz (CWI)

Thomas Neumann (TUM)

Orri Erling (Openlink Systems)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Why Read This Paper

 “TPC-H cheat sheet for DBMS architects”

◦ based on years of experience of three database

system design lead architects, who have

optimized their systems for TPC-H

◦ in-depth explanation of 28 crucial challenges in

the benchmark, with pointers to address these

 Inspire a benchmark design methodology

◦ “choke point” based

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Database Benchmark Design

Desirable properties:

 Relevant.

 Representative.

 Understandable.

 Economical.

 Accepted.

 Scalable.

 Portable.

 Fair.

 Evolvable.

 Public.

 Jim Gray (1991) The Benchmark Handbook for Database

 and Transaction Processing Systems

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)

 Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

 Karl Huppler (2009) The Art of Building a Good Benchmark

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Stimulating Technical Progress

 An aspect of ‘Relevant’

 The benchmark metric

◦ depends on,

◦ or, rewards:

solving certain

technical challenges

“Choke Point”

(not commonly solved by technology at benchmark
design time)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

◦ arise from Data (distribs)+Query+Workload

◦ there may be different technical solutions to

address the choke point

 or, there may not yet exist optimizations (but should

not be NP hard to do so)

 the impact of the choke point may differ among

systems

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

 “well-chosen”

◦ the majority of actual systems do not handle

the choke point very well

◦ the choke point occurs or is likely to occur in

actual or near-future workloads

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

This Paper: TPC-H choke points

 Even though TPC-D was designed without

specific choke point analysis

◦ more informal SQL query contribution process

 It contains a whole lot of them!

◦ many more than SSB

◦ considerably more than XMark

◦ not sure about TPC-DS (yet)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

TPC-H choke point areas (1/3)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

TPC-H choke point areas (2/3)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

TPC-H choke point areas (3/3)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone, n_name,

 c_address, c_comment

ORDER BY revenue DESC

Q10

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone,

 c_address, c_comment, n_name

ORDER BY revenue DESC

Q10

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP1.4 Dependent GroupBy Keys

 Functional dependencies:

 c_custkey  c_name, c_acctbal, c_phone,

c_address, c_comment, c_nationkey  n_name

 Group-by hash table should exclude the

colored attrs  less CPU+ mem footprint

 in TPC-H, one can choose to declare

primary and foreign keys (all or nothing)

◦ this optimization requires declared keys

◦ Key checking slows down RF (insert/delete)

Exasol:

“foreign key check” phase after load

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

◦ Most tuples will *not* find a match

◦ Probing (index, hash) is the most expensive

activity in TPC-H

 Can we do better?

◦ Bloom filters!

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

2G cycles 29M probes  cost would have been 14G cycles ~= 7 sec

1.5G cycles 200M probes  85% eliminated

probed: 200M tuples

result: 8M tuples

 1:25 join hit ratio

Q21

Vectorwise:

TPC-H joins typically accelerate 4x

Queries accelerate 2x

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP3.2 Physical Locality By Key

 most frequent selection in TPC-H is range

predicate between date columns

 there is correlation between these

 l_shipdate = o_orderdate + random[1:121]

 l_commitdate = o_orderdate + random[30:90]

 l_receiptdate = l_shipdate + random[1:30]

 techniques to use:

◦ clustered index

◦ partitioned table (by range)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP3.2 Physical Locality By Key

 can the optimizer derive a range on l_commitdate from l_shipdate?

◦ supposing a clustered index on l_shipdate

◦  e.g. Zone Maps, MinMax indices, Small Materialized Aggregates

 can the optimizer derive a range on o_orderdate from l_shipdate?

SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue,
o_orderdate, , o_shippriority

FROM customer, orders, lineitem

WHERE

 c_mktsegment = '[SEGMENT]‘ and c_custkey = o_custkey

 and l_orderkey = o_orderkey

 and o_orderdate < date '[DATE]‘

 and l_shipdate > date '[DATE]'

GROUP BY l_orderkey, o_orderdate, o_shippriority

ORDER BY revenue DESC o_orderdate;

Microsoft SQLserver magic flag

DATE_CORRELATION_OPTIMIZATION

Q3

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP4.1 Raw Expression Arithmetic

How fast is a query processor in computing, e.g.

 Numerical Arithmetic

 Aggregates

 String Matching

SELECT

 l_returnflag, l_linestatus, count(*),

 sum(l_quantity),sum(l_extendedprice),

 sum(l_extendedprice*(1-l_discount)),

 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),

 avg(l_quantity),avg(l_extendedprice),avg(l_discount),

FROM lineitem

WHERE l_shipdate <= date '1998-12-01' - interval
'[DELTA]' day (3)

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus

Q1

SIMD? Interpreter Overhead?

Vectorwise, Virtuoso, SQLserver cstore  vectorized execution

Hyper, Netteza, ParAccel  JIT query compilation

Kickfire, ParStream  hardware compilation (FPGA/GPU)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP5.2 Subquery Rewrite
SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part

WHERE p_partkey = l_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

 and l_quantity <(SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey)

This subquery can be extended with restrictions from
the outer query.

 SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

Q17

Hyper:

CP5.1+CP5.2+CP5.3

results in 500x faster

Q17

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP6.3: Re-Use

- For the Throughput score

- RF del/ins streams may be run in advance

- Subsequently, concurrent query streams

- Read-only system state

- Limited # parameter bindings

 Duplicate queries, Overlapping queries

Query Result Caching Opportunity

Oracle  previous runs used a query cache

MonetDB  Recycling, partial query re-use

TPC does not tolerate query caching options/directives

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Conclusion

 Choke Points: a concept in Benchmark Design

◦ trying to create relevant queries

◦ instrument to steer towards certain breakthroughs

 Full Analysis for TPC-H

◦ “cheat sheet” for improving systems on TPC-H

◦ 28 choke points

 have influenced many systems

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Thanks! / Questions?

Peter Boncz (CWI)

Thomas Neumann (TUM)

Orri Erling (Openlink Systems)

www.cwi.nl/~boncz/tpctc2013_boncz_neu

mann_erling.pdf

