LDBC <2
TPC-H Analyzed

Hidden Messages and Lessons
Learned from an Influential Benchmark

Peter Boncz (CWI)
Thomas Neumann (TUM)
Orri Erling (Openlink Systems)

LDBC <>
Why Read This Paper

e “TPC-H cheat sheet for DBMS architects”

° based on years of experience of three database
system design lead architects, who have
optimized their systems for TPC-H

Hy Pe r Virtuoso ':::0 vectorwise mone@

° in-depth explanation of 28 crucial challenges in
the benchmark, with pointers to address these

* Inspire a benchmark design methodology

> “choke point” based

LDBC <>
Database Benchmark Design

Desirable properties:
* Relevant.

» Representative.

* Understandable.

e Economical.

* Accepted. (o)
e Scalable. Jim Gray (1991) The Benchmark Handbook for Database
and Transaction Processing Systems
* Portable.
° F -r, Dina Bitton, David]. DeWitt, Carolyn Turbyfill (1993)
alr. Benchmarking Database Systems:A Systematic Approach
* Evolvable.

Multiple TPCTC papers, e.g.:

e Public. @ Ker! Huppler (2009) The Art of Building a Good Benchmark

LDBC &>
Stimulating Technical Progress

* An aspect of ‘Relevant’ P ANNIVERS 1S

e The benchmark metric ANSARI
> depends on,

-
' K (]

° or, rewards: _ : PRIZE =
: oS

-

solving certain .

technical challenges = ' \
SpaceShipOne

D
Py \O
.‘PIZE E O UND‘P;‘

(not commonly solved by technology at benchmark
design time)

LDBC <>

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

e “difficulties in the workloads”
> arise from Data (distribs)+Query+Workload
> there may be different technical solutions to
address the choke point

or, there may not yet exist optimizations (but should
not be NP hard to do so)

the impact of the choke point may differ among
systems

LDBC <>

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

e “difficulties in the workloads”

* “well-chosen”

°t
t
°t

he majority of actual systems do not handle
ne choke point very well

e choke point occurs or is likely to occur in

actual or near-future workloads

LDBC <>
This Paper: TPC-H choke points

* Even though TPC-D was designed without
specific choke point analysis

> more informal SQL query contribution process

* It contains a whole lot of them!
> many more than SSB
> considerably more than XMark
> not sure about TPC-DS (yet)

LDBC &>
TPC-H choke point areas (1/3)

Q1Q203Q4Q5QaQ7QRQIQ QI Q2Q13Q 14Q1HQLEQ L7IQ 18Q 19[Q20[Q2 11022

CP1 Aggregation Performance. Performance of aggregate calculations.

_ Bl BN

CP1.1 QEXE: Ordered Aggregation.

CP1.2 QOPT: Interesting Orders.

CP1.3 QOPT: Small Group-by Keys (array lookup).
CP1.4 QEXE: Dependent Group-By Keys (removal of).

CP2 Join Performance. Voluminous joins, with or without selections.

CP2.1 QEXE: Large Joins (out-of-core).

CP2.2 QEXE: Sparse Foreign Key Joins (bloom filters).
CP2.3 QOPT: Rich Join Order Optimization.

CP2.4 QOPT: Late Projection (column stores).

CP3 Data Access Locality. Non-full-scan access to (correlated) table data.

CP3.1 STORAGE: Columnar Locality (favors column storage).
CP3.2 STORAGE: Physical Locality by Key (clustered index, partitioning).
CP3.3 QOPT: Detecting Correlation (ZoneMap,MinMax,multi-attribute histograms).

LDBC &>
TPC-H choke point areas (2/3)

Q1|Q2Q3|Q4Q5|Q6|QTIQ]QIINQL0QLI1Q12Q131Q14Q15Q16|Q17TIQ18|Q19|Q20/Q21|Q22

CP4 Expression Calculation. Efficiency in evaluating (complex) expressions.
I

5’4.1 Raw Expression Arithmetic. -

CP4.1a QEXE: Arithmetic Operation Performance.

CP4.1b QEXE: Overflow Handling (in arithmetic operations).

CP4.1c QEXE: Compressed Execution.

CP4.1d QEXE: Interpreter Overhead (vectorization; CPU/GPU/FPGA JI'T compil.).

CP4.2 Complex Boolean Expressions in Joins and Selections.

CP4.2a QOPT: Common Subexpression Elimination (CSE).

CP4.2b QOPT: Join-Dependent Expression Filter Pushdown.

CP4.2¢c QOPT: Large IN Clauses (invisible join).

CP4.2d QEXE: Evaluation Order in Conjunctions and Disjunctions.

CP4.3 String Matching Performance.

CP4.3a QOPT: Rewrite LIKE(X%) into a Range Query.

CP4.3b QEXE: Raw String Matching Performance (e.g. using SSE4.2).

CP4.3¢c QEXE: Regular Expression Compilation (JIT/FSA generation).

LDBC <>

TPC-H choke point areas (3/3)

01

02

Q3

04

Q5[Q6

Q7

0O

Qo

Q10

Qi1

Q12

Q13

Ql4

Q15

Q16

Q17

Q18

Q19

Q20021022

CP5 Corre

lated

Su

bqueries. Efficiently handling dependent subqueries.

I

CP5.1 QOPT: Flattening Subqueries (into join plans).
CP5.2 QOPT: Moving Predicates into a Subquery.
CP5.3 QEXE: Overlap between Outer- and Subquery.

CP6 Parallelism and Concurrency. Making use of parallel computing resources.

CP6.1 QOPT: Query Plan Parallelization.
CP6.2 QEXE: Workload Management.
CP6.3 QEXE: Result Re-use.

LDBC &>
CP1.4 Dependent GroupBy Keys

SELECT c_custkey, c¢_name, c_acctbal,

sum(l extendedprice * (1 - 1 discount)) as revenue,
n _name, c_address, c¢_phone, c_comment
FROM customer, orders, lineitem, nation

WHERE c custkey = o _custkey and 1 orderkey = o orderkey
and o _orderdate >= date '[DATE]'
and o _orderdate < date '[DATE]' + interval '3' month

and 1 returnflag = 'R' and c _nationkey = n nationkey
GROUP BY
c_custkey, c_name, c_acctbal, c¢_phone, n name,

c_address, c_comment
ORDER BY revenue DESC

LDBC &>
CP1.4 Dependent GroupBy Keys

SELECT c_custkey, c¢_name, c_acctbal,

sum(l extendedprice * (1 - 1 discount)) as revenue,
n _name, c_address, c¢_phone, c_comment
FROM customer, orders, lineitem, nation

WHERE c custkey = o _custkey and 1 orderkey = o orderkey
and o _orderdate >= date '[DATE]'
and o _orderdate < date '[DATE]' + interval '3' month

and 1 returnflag = 'R' and c _nationkey = n nationkey
GROUP BY
c_custkey, c name, c_acctbal, c_phone,

c_address, c_comment, n name
ORDER BY revenue DESC

LDBC &>
CP1.4 Dependent GroupBy Keys

* Functional dependencies:

c_custkey > 4 C_name, c_acctbal, c phone,
c_address, c _comment, c nationkey = n name

* Group-by hash table should exclude the
colored attrs =» less CPU+ mem footprint

* in TPC-H, one can choose to declare
primary and foreign keys (all or nothing)
> this optimization requires declared keys

> Key checking slows down RF (insert/delete)
Exasol:
“foreign key check” phase after load

LDBC &>
CP2.2 Sparse Joins

* Foreign key (N:1) joins towards a relation
with a selection condition

> Most tuples will *not™ find a match

° Probing (index, hash) is the most expensive
activity in TPC-H

e Can we do better?

o Bloom filters!

LDBC <>
CP2.2 Sparse Joins

* Foreign key (N:1) joins towards a relation
with a selection condition f949,980

probed: 200M tuples . HashJoin01 @10 _
time=5,053,398.,219 (8.30%) (0.06% in bld)

result: 8M tuples S 659 5 71%)
=>» 1:25 join hit ratio i€ 199,157,657 ¢ e1=3.99
LY S 45 <)

build= 1,634,964 (0%)
est_cost=4,644,284,160 est = 1/1 x

Vectorwise:
TPC-H joins typically accelerate 4x
Queries accelerate 2x

2G cycles 29M probes =» cost would have been 14G cycles ~= 7 sec
#PRDQ.Eavg rdtsc 307565 calls vht lookup keys(} "vht lookup keys" in con

#PRD 7.8awvg rdtsc 307534 calls sel bitfiltercheck uchr col slng val =sint
|.5G cycles 200M probes =» 85% eliminated

LDBC &>
CP3.2 Physical Locality By Key

* most frequent selection in TPC-H is range
predicate between date columns

e there is correlation between these

1l shipdate = o orderdate + random[1l:121]
1l commitdate = o _orderdate + random[30:90]

1l receiptdate = 1 shipdate + random[1:30]

e techniques to use:
o clustered index

o partitioned table (by range)

LDBC &>
CP3.2 Physical Locality By Key

* can the optimizer derive a range on |_commitdate from |_shipdate?
> supposing a clustered index on |_shipdate
o =¥ e.g. Zone Maps, MinMax indices, Small Materialized Aggregates
e can the optimizer derive a range on o_orderdate from |_shipdate?

SELECT 1 orderkey, sum(l extendedprice* (1-1 discount)) as revenue,
o orderdate, , o shippriority

FROM customer, orders, lineitem

WHERE
c _mktsegment = '[SEGMENT]' and c custkey = o custkey
and 1 orderkey = o orderkey

and o_orderdate < date '[DATE]"

and 1 _shipdate > date '[DATE]'
GROUP BY 1 orderkey, o orderdate, o shippriority
ORDER BY revenue DESC o orderdate;

Microsoft SQLserver magic flag
DATE_CORRELATION_OPTIMIZATION

LDBC <%>
CP4.1 Raw Expression Arithmetic

How fast is a query processor in computing, e.g.
e Numerical Arithmetic

o Aggregates

e String Matching

SELECT

1l returnflag, 1 linestatus, count(¥*),

sum(l quantity) ,sum(l_extendedprice),

sum(l extendedprice* (1l-1 discount)),

sum(l extendedprice* (1-1 discount)*(1+l tax)),

avg (1l _quantity) ,avg(l_extendedprice) ,avg(l_discount),
FROM linesi+-~—

SIMD? Interpreter Overhead?
Vectorwise,Virtuoso, SQLserver cstore =» vectorized execution

Hyper, Netteza, ParAccel = JIT query compilation
Kickfire, ParStream =» hardware compilation (FPGA/GPU)

LDBC &>
CP5.2 Subquery Rewrite

SELECT sum(l extendedprice) / 7.0 as avg yearly
FROM lineitem, part

WHERE p partkey = 1 partkey
and p brand = '[BRAND]'
and p container = '[CONTAINER]'
and 1 quantity <(SELECT 0.2 * avg(l quantity)
FROM lineitem

WHERE 1 partkey = p partkey)

This subquery can be extended with restrictions from
the outer query.

H SELECT 0.2 * avg(l quantity)
yper: e —
CP5.1+CP5.2+CP5.3 FROM lineitem
results in 500x faster WHERE 1 partkey = p_partkey
Ql7 and p brand = '[BRAND]'
and p container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

LDBC 2>
CP6.3: Re-Use

- For the Throughput score
- RF del/ins streams may be run in advance

- Subsequently, concurrent query streams
Read-only system state

Limited # parameter bindings
=» Duplicate queries, Overlapping queries

Query Result Caching Opportunity
Oracle =>» previous runs used a query cache
MonetDB =» Recycling, partial query re-use

TPC does not tolerate query caching options/directives

LDBC 2>
Conclusion

e Choke Points: a concept in Benchmark Design
° trying to create relevant queries

° instrument to steer towards certain breakthroughs

e Full Analysis for TPC-H

° “cheat sheet” for improving systems on TPC-H

o 28 choke points

have influenced many systems

LDBC <>

Thanks! / Questions!

Peter Boncz (CWI)
Thomas Neumann (TUM)
Orri Erling (Openlink Systems)

