
Benchmarking Challenges with
Big Data and Cloud Services

Raghu Ramakrishnan

Cloud Information Services Lab (CISL)

Microsoft

The World Has Changed

• Serving applications that need:
– Scalability!

• Elastic on demand, commodity boxes

– Flexible schemas

– Geographic distribution/replication

– High availability

– Low latency

• Are willing to trade:
– Complex queries

– ACID transactions

• But still benefit from support for data consistency

The World Has Changed

• Analytic applications need:
– Scalability!

• Elastic on demand, commodity boxes
– Data variety
– Wide range of analytics
– High availability
– Interactivity

• And are increasingly coupled tightly with
data serving and stream capture!
– Real-time response

HDFS

Data file

Map tasks

HDFS

Good for scanning/sequentially writing/appending to huge files
Scales by “mapping” input to partitions, “reducing” partitions in parallel

Partitions written to disk for fault-tolerance
Expensive “shuffle” step between Map & Reduce

No concept of iteration

Hive and Pig are SQL variants implemented by translation to
MapReduce

Not great for serving (reading or writing individual objects)

Reduce tasks

Analytics: Hadoop MapReduce Primer

E 75656 C

A 42342 E

B 42521 W

C 66354 W

D 12352 E

F 15677 E

Serving: PNUTS/Sherpa Primer

E 75656 C

A 42342 E

B 42521 W

C 66354 W

D 12352 E

F 15677 E

CREATE TABLE Parts (

ID VARCHAR,

StockNumber INT,

Status VARCHAR

…

)

Parallel database Geographic replication

Structured, flexible schema

Hosted, managed infrastructure

A 42342 E

B 42521 W

C 66354 W

D 12352 E

E 75656 C

F 15677 E

5

New Scenarios
Variety, Velocity, Volume

Internet of Things

http://blogs.cisco.com/news/the-internet-of-things-infographic/

• IoT opens new “field of streams”: new app possibilities
• Requires real-time responses, continuous forensics
• Edge processing vs. collection-side processing

Apps

MonitorData
logger

Analysis
scripts

App
UI

(Slide courtesy Ratul Mahajan, MSR)

HomeOS: An Instance of IoT

Kinect
• The Kinect is an array of sensors.

– Depth, audio, RGB camera …

• SDK provides a 3D virtual skeleton.
– 20 points around the body, 30 fps
– 30 frames per second
– Between 60-70M sold by May 2013

• Exemplar of “Internet of Things”
– Event streams from a multitude of devices,

enabling broad new apps

• ML for full-body gait analysis (Mickey Gabel,
Ran Gilad-Bachrach, Assaf Schuster, Eng. Med.
Bio. 2012)

(Slide modified from Assaf Schuster, Technion)

Typical Y! Applications

• User logins and profiles
– Including changes that must not be lost!

• But single-record “transactions” suffice

• Events
– Alerts (e.g., news, price drops)
– Social network activity (e.g., user goes offline)
– Ad clicks, article clicks

• Application-specific data
– Postings in message board
– Uploaded photos, tags
– Shopping carts

700M+ UU, 11B pages/month
Hundreds of petabytes of storage
Hundreds of billions of objects
Hundred of thousands of reqs/sec
Global, rapidly evolving workloads

These will be
increasingly
reflected in
enterprise

settings as cloud
adoption grows,

e.g., O365,
SalesForce

Content Optimization
Agrawal et al., CACM 56(6):92-101 (2013)
Content Recommendation on Web Portals

Key Features

Package Ranker (CORE)

Ranks packages by expected CTR based on

data collected every 5 minutes

Dashboard (CORE)

Provides real-time insights into performance by

package, segment, and property

Mix Management (Property)

Ensures editorial voice is maintained and user

gets a variety of content

Package rotation (Property)

Tracks which stories a user has seen and

rotates them after user has seen them for a

certain period of time

Key Performance Indicators

Lifts in quantitative metrics

Editorial Voice Preserved
Recommended links News Interests Top Searches

CORE Dashboard
Segment Heat Map

CORE Modeling Overview

Offline Modeling
• Exploratory data analysis
• Regression, feature selection,

collaborative filtering (factorization)

• Seed online models & explore/exploit
methods at good initial points

• Reduce the set of candidate items

Online Learning
• Online regression models,
time-series models

• Model the temporal dynamics
• Provide fast learning for per-item models

Explore/Exploit
• Multi-armed bandits

• Find the best way of collecting real-
time user feedback (for new items)

Large amount of
historical data

(user event streams)

Near real-time user feedback

Data Management in CORE

HDFS

1) User click history logs
stored in HDFS

2) Hadoop job builds models
of user preferences

3) Hadoop reduce writes
models to Sherpa user
table

4) Models read from Sherpa
influence users’ frontpage
content

Candidate content

• Read:

• Write:

• Write: User Profile

Adam 41,311,56,12,13

Brad 42,15,66,123,1

Toby 4321,1,44,13

Utkarsh 42,133,122,33

… …

Sherpa

Serving

Batch

Input: Large dimensionality
vector describing possible
user activities
• But a typical user has a

sparse activity vector

Output: User profile that
weights affinity along
dimensions/activities of
interest

Pipeline steps:

• Example formation:
• Data acquisition and

sessionization

• Feature and target
generation

• Model training

• Model testing

• Deployment: Upload
models for serving

16

Example: User
Activity Modeling

Step I: Example Formation
Feature Extraction

Label Extraction

Step II: Modeling

Step III: Deployment (or just Evaluation)

Machine Learning Workflow

Example

Formation
Modeling

Evaluation /

Deployment

18

User Activity Modeling

• Hadoop pipeline to model user interests from activities

• Basis for Deep Analysis Pipeline proposal for Big Data
benchmark from Bhandarkar (based on collaboration with
Vijay Narayanan)

Attribute Possible Values Typical values per

user

Pages ~ MM 10 – 100

Queries ~ 100s of MM Few

Ads ~ 100s of thousands 10s

19
19

Feature and Target Windows

Time

Query Visit Y! finance

Feature Window Target Window

Event of interest

Moving Window

T0

Example

Example Formation: SQL at Scale

EMail

Click Log

Bag of

Words

I

D

Label
I

D

Bag of

Words
Label

I

D

Feature Extraction

Label Extraction

Data Parallel

Functions

Large Scale

Join

Large Scale

Join

21

User Modeling Pipeline

Component Data Processed Time

Data Acquisition ~ 1 Tb per time

period

2 – 3 hours

Feature and Target

Generation

~ 1 Tb * Size of

feature window

4 - 6 hours

Model Training ~ 50 - 100 Gb 1 – 2 hours for 100’s

of models

Scoring ~ 500 Gb 1 hour

Model Training

• Once examples have been formed, can use
any available techniques to train models:
– Gradient Boosted Decision Trees

– Naïve Bayes

– Linear Regression

– SVMs

• Models are cross-validated to find good ones

• Finally, models are operationalized by
deploying to serving systems

Machine Learning Workflow

YARN

Example

Formation
Modeling

Evaluation /

Deployment

Spark

GraphLab

MPI

Pregel

One-Offs

Dryad

Pig/Hive

M/R

SQL

Hyracks

…

Dryad

Pig/Hive/SQL

StreamInsight

One-Offs

The Digital Shoebox
Build it—they’re here already!

Shoebox Store

• Capture any data, react
instantaneously, mix with data
stored anywhere

• Tiered storage management

• Federated access

• Use any analysis tool
(anywhere, mix and match,
interactively)

• Compute fabric

• Collaborate/Share selectively

Tiered Shoebox
Store

SQL / Hive
/MR

Stream
Processing

Business
Intelligence

Machine
Learning

Remote
Stores

Compute Fabric

DATA INGEST

Integrated Query “In-Place”

Can join and group-by tables from a
relational source with tables in a Hadoop
cluster without needing to learn
MapReduce

Integrated BI Tools

Using Excel, end users can search for data
sources with Power Query and do roll-
up/drill-down etc. with Power Pivot—
across both relational and Hadoop data

Interactive Visualizations

Use Power View for immersive
interactivity and visualizations of both
relational and Hadoop data

Aster/Teradata

Berkeley Data Analytics Stack

Cloudera

Google

HortonWorks

Microsoft

Pivotal/EMC

SQL on Hadoop panel, Aug 2013:
http://hivedata.com/real-time-query-panel-discussion/

Challenges

• Volume

– Elastic scale-out

– Multi-tenancy

• Variety

– Data variety coupled with range of analytics

• Velocity

– Real-time and OLTP, interactive, batch

How Far Away is Data?

• GFS and Map-Reduce:
– Schedule computation “near” data
– i.e., on machines that have data on their disks

• But
– Windows Azure Storage

• And slower tiers such as tape storage, e.g., Glacier …

– Main memory growth
• And flash, SSDs, NVRAM etc. …

• Must play two games simultaneously:
– Cache data across tiers, anticipating workloads
– Schedule compute near cached data

Compute Fabric: YARN

• Resource manager for Hadoop2.x

• Allocates compute containers to competing
jobs

– Not necessarily MR jobs!

– Containers are the unit of resource

– Can fail or be taken away; programmer must
handle these cases

• Other RMs include Corona, Mesos, Omega

Making YARN Easier to Use: REEF

• Evaluator: YARN container with REEF services
– Capability-awareness, Storage support, Fault-

handling support, Communications, Job/task
tracking, scheduling hooks

• Activity: User Code to be executed in an
Evaluator
– Monitored, preemptable, re-started as needed

– Unique id over lifetime of job

– Executes in an Evaluator, which can be re-used

Digital Shoebox

HDFS-as-Cache

Relational
Queries

Machine
Learning

REEF

YARN

WAS

TIERED
STORAGE

COMPUTE
FABRIC

ANALYSIS
ENGINES

DURABLE
STORAGE

COMPUTE
TIER
(Cluster of
machines
with local
RAM, SSDs,
disks, …)

Operators

Expect to see
many more!

Benchmarking Big Data
Clouds, Quality, Variety, Velocity

Building on TPC, TREC, SPEC
Recent initiatives: WBBD, BigDataTop100

This workshop!

Benchmark Dimensions
– Workload dimensions

• Data variety (Tables, graphs, streams, loosely-structured docs,
media)

• Type of analysis (serving vs. analytics; degree of consistency;
quality-sensitivity; batch vs. interactive vs. real-time)

• Result quality vs. performance

– System dimensions
• Architecture (Storage hierarchy, edge processing)

• Cloud (Elasticity)

– Metrics
• Performance (latency/throughput, stream rate)

• Scale-up, scale-out, elasticity

• Quality (precision-recall, ranking quality, lift)

• Availability (uptime, range of faults handled, fault-recovery time)

• Cost: $, $/perf metric, per metric/$

YCSB: Benchmarking Serving Systems
citation

• There are many “cloud DB” and “nosql” systems out there
– Sherpa
– BigTable

• HBase, Hypertable, HTable

– Megastore
– Azure
– Cassandra
– Amazon Web Services

• S3, SimpleDB, EBS

– CouchDB
– Voldemort
– Dynomite
– Espresso

• How do they compare?
– Feature tradeoffs
– Performance tradeoffs
– Not clear!

Goal

• Implement a standard benchmark for data serving

– Evaluate different systems on common workloads

– Focus on performance and elastic scale out

• Future additions – availability, replication

• Not to mention multi-tenancy and “services”!

• Artifacts

– Open source workload generator

– Experimental study comparing several systems

Benchmark Tiers

• Tier 1 – Performance
– For constant hardware, increase offered throughput until

saturation
– Measure resulting latency/throughput curve
– “Sizeup” in Wisconsin benchmark terminology

• Tier 2 – Scalability
– Scaleup – Increase hardware, data size and workload

proportionally. Measure latency; should be constant

– Elastic speedup – Run workload against N servers; while
workload is running add N+1th server; measure timeseries
of latencies (should drop after adding server)

Workloads

• Workload – particular combination of workload parameters,
defining one workload
– Defines read/write mix, request distribution, record size, …
– Two ways to define workloads:

• Adjust parameters to an existing workload (via properties file)
• Define a new kind of workload (by writing Java code)

• Experiment – running a particular workload on a particular
hardware setup to produce a single graph for 1 or N systems
– Example – vary throughput and measure latency while

running a workload against Cassandra and HBase

• Workload package – A collection of related workloads
– E.g., CoreWorkload – a set of basic read/write workloads

Tier 1 CoreWorkload

• CoreWorkload defines:
– A parameterized data set

– A parameterized query

• Roughly: do a read, write, insert or scan with some
probability on each request

– A set of parameters for the data set and queries

– This is sufficient to run a wide range of specific Workload
instances

• E.g., 95/5 read/write, 95/2.5/2.5 read/write/insert, etc

• What if I want something other than these
workloads?
– Abstract Workload class can be extended in YCSB with your

own data set and query by writing Java code

Core Workload Package

• Workload A – Update heavy
– 50/50 read/write
– Update part of the record
– Zipfian request distribution
– Example app: session store recording

recent actions

• Workload B – Read mostly
– 95/5 read/write
– Update whole record
– Zipfian request distribution
– Example app: photo tagging; add a

tag is an update, but most operations
are to read tags

• Workload C – Read only
– 100% read
– Zipfian request distribution
– Example app: user profile cache,

where profiles are constructed
elsewhere (e.g., Hadoop)

• Workload D - Read latest
– 95/0/5 read/write/insert
– “Latest” request distribution
– Example app: Twitter event store

• Workload E – Short ranges
– 95/5 scan/insert
– Zipfian request distribution
– Example app: threaded

conversations, where each scan is for
the posts in a given thread (assumed
to be clustered by thread id)

– Note – inserts should be random
LoadOrder

Goal: Define handful of workloads as the core “standard” workloads

Benchmark Tool
• Java application

– Many systems have Java APIs

– Other systems via HTTP/REST, JNI or some other solution

Workload

parameter file

• R/W mix

• Record size

• Data set

• …

Command-line parameters

• DB to use

• Target throughput

• Number of threads

• …

YCSB client

D
B

 c
lie

n
t

Client

threads

Stats

Workload

executor C
lo

u
d
 D

B

Extensible: plug in new clientsExtensible: define new workloads

GridMix: Benchmarking Hadoop Analytics
citation

• Mix of synthetic jobs modeling a profile mined from
production loads

• Emulates users and job queues

• Can emulate distributed cache files

• Can emulate (de-)compression, high-RAM jobs, resource
usage

• Simplifying assumptions about:

– File-system properties (other than bytes/records
consumed/emitted)

• Record sizes / key distributions based on averages, i.e., no skew

– Job I/O rates and memory profiles

– Jobs assumed to succeed; run independently of other jobs

TEXTURE: Benchmarking Performance of
Text Queries on a Relational DBMS

Ercegovac, DeWitt, Ramakrishnan SIGMOD 05

• Queries with relevance ranking, instead of those that
compute all answers
– Richer mix of text and relational processing

– Measures only performance, not quality

– Only queries; no updates, bulk-loading, or multi-user support

• Micro-benchmark where experiment is defined by selecting:
– Dataset size: Data schema based on Wisconsin Benchmark, extending

it with two (short, in-line with row; long, separate blob) text fields
generated using TextGen

– Query workload: (1) text-only queries, (2) single-table mixed queries,
and (3) multiple-table mixed queries.

– Evaluation mode: (1) all results, (2) the first result, or (3) top-k results

TextGen: Synthetic Text Generator
Ercegovac, DeWitt, Ramakrishnan SIGMOD 05

– Generates large text corpora that reflect (performance
related) characteristics of a given “seed” corpus

– Features from seed that are maintained during scale up:
• Word Distribution W(w,c): Associates with every unique word w in

the corpus, the number of times c it appears in the corpus.

– Modeled by using same proportions as in seed

• Vocabulary Growth (G): Number of unique words grows as new
documents are added to a corpus.

– Modeled using Heap’s law: G(x) = αxβ; parameters estimated
using least squares fit

• Unique Words per Document (U) and Document Length (D)

– Modeled using averages from seed corpus

BigBench: Benchmarking Hadoop Analytics
Ghazal et al., SIGMOD 13

• End-to-end big data benchmark proposal

• Data schemas extend TPC-DS
– Semi-structured component: Web clicks

– Unstructured: Product reviews

• Synthetic data generator
– Suggestion: Consider TextGen (from Texture!) for unstructured data

• Technical considerations in choosing workload:
– Data types involved; declarative or procedural; Statistical/mining/SQL

• Analytic workload based on McKinsey retail analytics report
– Associations, e.g., Cross-selling based on products purchased together

– Statistical, e.g., correlation of sales with competitor’s prices

– ML, e.g., sentiment analysis of product reviews

– SQL-based reports, e.g., 30-day sales before and after price change

DAP: Benchmarking ML Pipelines
Milind Bhandarkar with Vijay Narayanan

• Based on user-modeling pipeline workloads at
Yahoo!

• Proposal:

– Pipelines constructed by mix and match of various stages

– Different analysis/modeling techniques per stage

– (Create a standardized version and) publish performance
numbers for every stage

Data is the new gold, data
mining the new Klondike

Big Data platforms fuse
scale-out analytics and
serving systems

Moving to the cloud:
ComScore for DB services?

Convergence of analytics

• Batch, interactive, real-time

Digital Shoebox trend

• Data variety: Structured,
unstructured, streams,
graphs, DNA, media, etc.

• Analytics variety: SQL, ML, BI

New things to measure

• Quality

• Elasticity

• Multitenancy

