
Benchmarking Challenges with
Big Data and Cloud Services

Raghu Ramakrishnan

Cloud Information Services Lab (CISL)

Microsoft



The World Has Changed

• Serving applications that need:
– Scalability!

• Elastic on demand, commodity boxes

– Flexible schemas

– Geographic distribution/replication

– High availability

– Low latency

• Are willing to trade:
– Complex queries

– ACID transactions

• But still benefit from support for data consistency 



The World Has Changed

• Analytic applications need:
– Scalability!

• Elastic on demand, commodity boxes
– Data variety
– Wide range of analytics
– High availability
– Interactivity

• And are increasingly coupled tightly with 
data serving and stream capture!
– Real-time response



HDFS

Data file

Map tasks

HDFS

Good for scanning/sequentially writing/appending to huge files
Scales by “mapping” input to partitions, “reducing” partitions in parallel

Partitions written to disk for fault-tolerance
Expensive “shuffle” step between Map & Reduce

No concept of iteration

Hive and Pig are SQL variants implemented by translation to 
MapReduce

Not great for serving (reading or writing individual objects)

Reduce tasks

Analytics: Hadoop MapReduce Primer
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Serving: PNUTS/Sherpa Primer
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CREATE TABLE Parts (

ID VARCHAR,

StockNumber INT,

Status VARCHAR

…

)

Parallel database Geographic replication

Structured, flexible schema

Hosted, managed infrastructure
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New Scenarios
Variety, Velocity, Volume



Internet of Things

http://blogs.cisco.com/news/the-internet-of-things-infographic/

• IoT opens new “field of streams”: new app possibilities
• Requires real-time responses, continuous forensics
• Edge processing vs. collection-side processing



Apps

MonitorData 
logger

Analysis 
scripts

App
UI

(Slide courtesy Ratul Mahajan, MSR)

HomeOS: An Instance of IoT



Kinect 
• The Kinect is an array of sensors.

– Depth, audio, RGB camera …

• SDK provides a 3D virtual skeleton.
– 20 points around the body, 30 fps
– 30 frames per second
– Between 60-70M sold by May 2013

• Exemplar of “Internet of Things”
– Event streams from a multitude of devices, 

enabling broad new apps

• ML for full-body gait analysis (Mickey Gabel, 
Ran Gilad-Bachrach, Assaf Schuster, Eng. Med. 
Bio. 2012)

(Slide modified from Assaf Schuster, Technion)



Typical Y! Applications

• User logins and profiles
– Including changes that must not be lost!

• But single-record “transactions” suffice

• Events
– Alerts (e.g., news, price drops)
– Social network activity (e.g., user goes offline)
– Ad clicks, article clicks

• Application-specific data
– Postings in message board
– Uploaded photos, tags
– Shopping carts

700M+ UU, 11B pages/month
Hundreds of petabytes of storage
Hundreds of billions of objects
Hundred of thousands of reqs/sec
Global, rapidly evolving workloads

These will be 
increasingly 
reflected in 
enterprise 

settings as cloud 
adoption grows, 

e.g.,  O365, 
SalesForce



Content Optimization
Agrawal et al., CACM 56(6):92-101 (2013) 
Content Recommendation on Web Portals

Key Features

Package Ranker (CORE)

Ranks packages by expected CTR based on 

data collected every 5 minutes

Dashboard (CORE)

Provides real-time insights into performance by 

package, segment, and property

Mix Management (Property)

Ensures editorial voice is maintained and user 

gets a variety of content

Package rotation (Property)

Tracks which stories a user has seen and 

rotates them after user has seen them for a 

certain period of time

Key Performance Indicators

Lifts in quantitative metrics

Editorial Voice Preserved
Recommended links News Interests Top Searches



CORE Dashboard 
Segment Heat Map



CORE Modeling Overview

Offline Modeling
• Exploratory data analysis
• Regression, feature selection,

collaborative filtering (factorization) 

• Seed online models & explore/exploit
methods at good initial points

• Reduce the set of candidate items 

Online Learning
• Online regression models, 
time-series models

• Model the temporal dynamics
• Provide fast learning for per-item models

Explore/Exploit
• Multi-armed bandits

• Find the best way of collecting real-
time user feedback (for new items)

Large amount of
historical data

(user event streams)

Near real-time user feedback



Data Management in CORE

HDFS

1) User click history logs 
stored in HDFS

2) Hadoop job builds models 
of user preferences

3) Hadoop reduce writes 
models to Sherpa user 
table

4) Models read from Sherpa 
influence users’ frontpage 
content

Candidate content



• Read: 

• Write: 

• Write: User Profile

Adam 41,311,56,12,13

Brad 42,15,66,123,1

Toby 4321,1,44,13

Utkarsh 42,133,122,33

… …

Sherpa

Serving

Batch



Input: Large dimensionality 
vector describing possible 
user activities
• But a typical user has a 

sparse activity vector

Output: User profile that 
weights affinity along 
dimensions/activities of 
interest

Pipeline steps:

• Example formation:
• Data acquisition and 

sessionization

• Feature and target 
generation

• Model training

• Model testing

• Deployment: Upload 
models for serving
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Example: User 
Activity Modeling



Step I: Example Formation
Feature Extraction

Label Extraction

Step II: Modeling

Step III: Deployment (or just Evaluation)

Machine Learning Workflow

Example 

Formation
Modeling

Evaluation / 

Deployment
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User Activity Modeling

• Hadoop pipeline to model user interests from activities

• Basis for Deep Analysis Pipeline proposal for Big Data 
benchmark from Bhandarkar (based on collaboration with 
Vijay Narayanan)

Attribute Possible Values Typical values per 

user

Pages ~ MM 10 – 100

Queries ~ 100s of MM Few

Ads ~ 100s of thousands 10s
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Feature and Target Windows

Time

Query Visit Y! finance

Feature Window Target Window

Event of interest

Moving Window

T0



Example

Example Formation: SQL at Scale

EMail

Click Log

Bag of 

Words

I

D

Label
I

D

Bag of 

Words
Label

I

D

Feature Extraction

Label Extraction

Data Parallel 

Functions

Large Scale 

Join

Large Scale 

Join
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User Modeling Pipeline

Component Data Processed Time

Data Acquisition ~ 1 Tb per time 

period

2 – 3 hours

Feature and Target 

Generation

~ 1 Tb * Size of 

feature window

4 - 6 hours

Model Training ~ 50 - 100 Gb 1 – 2 hours for 100’s 

of models

Scoring ~ 500 Gb 1 hour



Model Training

• Once examples have been formed, can use 
any available techniques to train models:
– Gradient Boosted Decision Trees

– Naïve Bayes

– Linear Regression

– SVMs

• Models are cross-validated to find good ones

• Finally, models are operationalized by 
deploying to serving systems



Machine Learning Workflow

YARN

Example 

Formation
Modeling

Evaluation / 

Deployment

Spark

GraphLab

MPI

Pregel

One-Offs

Dryad

Pig/Hive

M/R

SQL

Hyracks

…

Dryad

Pig/Hive/SQL

StreamInsight

One-Offs



The Digital Shoebox
Build it—they’re here already!



Shoebox Store

• Capture any data, react 
instantaneously, mix with data 
stored anywhere

• Tiered storage management

• Federated access

• Use any analysis tool 
(anywhere, mix and match, 
interactively)

• Compute fabric

• Collaborate/Share selectively

Tiered Shoebox 
Store

SQL / Hive 
/MR

Stream 
Processing

Business
Intelligence

Machine
Learning

Remote
Stores

Compute Fabric

DATA INGEST



Integrated Query “In-Place”

Can join and group-by tables from a 
relational source with tables in a Hadoop 
cluster without needing to learn 
MapReduce

Integrated BI Tools 

Using Excel, end users can search for data 
sources with Power Query and do roll-
up/drill-down etc. with Power Pivot—
across both relational and Hadoop data

Interactive Visualizations 

Use Power View for immersive 
interactivity and visualizations of both 
relational and Hadoop data



Aster/Teradata

Berkeley Data Analytics Stack

Cloudera

Google

HortonWorks

Microsoft

Pivotal/EMC 

SQL on Hadoop panel, Aug 2013:
http://hivedata.com/real-time-query-panel-discussion/



Challenges

• Volume

– Elastic scale-out

– Multi-tenancy

• Variety

– Data variety coupled with range of analytics

• Velocity

– Real-time and OLTP, interactive, batch



How Far Away is Data?

• GFS and Map-Reduce:
– Schedule computation “near” data
– i.e., on machines that have data on their disks

• But
– Windows Azure Storage

• And slower tiers such as tape storage, e.g., Glacier …

– Main memory growth
• And flash, SSDs, NVRAM etc. …

• Must play two games simultaneously:
– Cache data across tiers, anticipating workloads
– Schedule compute near cached data



Compute Fabric: YARN

• Resource manager for Hadoop2.x

• Allocates compute containers to competing 
jobs

– Not necessarily MR jobs!

– Containers are the unit of resource

– Can fail or be taken away; programmer must 
handle these cases

• Other RMs include Corona, Mesos, Omega



Making YARN Easier to Use: REEF

• Evaluator: YARN container with REEF services
– Capability-awareness, Storage support, Fault-

handling support, Communications, Job/task 
tracking, scheduling hooks 

• Activity: User Code to be executed in an 
Evaluator
– Monitored, preemptable, re-started as needed

– Unique id over lifetime of job

– Executes in an Evaluator, which can be re-used





Digital Shoebox

HDFS-as-Cache

Relational 
Queries

Machine
Learning

REEF

YARN

WAS

TIERED
STORAGE

COMPUTE
FABRIC

ANALYSIS
ENGINES

DURABLE
STORAGE

COMPUTE
TIER
(Cluster of 
machines 
with local 
RAM, SSDs, 
disks, …)

Operators

Expect to see 
many more!



Benchmarking Big Data
Clouds, Quality, Variety, Velocity

Building on TPC, TREC, SPEC
Recent initiatives: WBBD, BigDataTop100

This workshop!



Benchmark Dimensions
– Workload dimensions

• Data variety (Tables, graphs, streams, loosely-structured docs, 
media)

• Type of analysis (serving vs. analytics; degree of consistency; 
quality-sensitivity; batch vs. interactive vs. real-time)

• Result quality vs. performance

– System dimensions
• Architecture (Storage hierarchy, edge processing) 

• Cloud (Elasticity)

– Metrics
• Performance (latency/throughput, stream rate)

• Scale-up, scale-out, elasticity

• Quality (precision-recall, ranking quality, lift) 

• Availability (uptime, range of faults handled, fault-recovery time)

• Cost: $, $/perf metric, per metric/$



YCSB: Benchmarking Serving Systems
citation

• There are many “cloud DB” and “nosql” systems out there
– Sherpa
– BigTable

• HBase, Hypertable, HTable

– Megastore
– Azure
– Cassandra
– Amazon Web Services

• S3, SimpleDB, EBS

– CouchDB
– Voldemort
– Dynomite
– Espresso

• How do they compare?
– Feature tradeoffs
– Performance tradeoffs
– Not clear!



Goal

• Implement a standard benchmark for data serving

– Evaluate different systems on common workloads

– Focus on performance and elastic scale out

• Future additions – availability, replication

• Not to mention multi-tenancy and “services”!

• Artifacts

– Open source workload generator

– Experimental study comparing several systems



Benchmark Tiers

• Tier 1 – Performance
– For constant hardware, increase offered throughput until 

saturation
– Measure resulting latency/throughput curve
– “Sizeup” in Wisconsin benchmark terminology

• Tier 2 – Scalability
– Scaleup – Increase hardware, data size and workload 

proportionally. Measure latency; should be constant

– Elastic speedup – Run workload against N servers; while 
workload is running add N+1th server; measure timeseries
of latencies (should drop after adding server)



Workloads

• Workload – particular combination of workload parameters, 
defining one workload
– Defines read/write mix, request distribution, record size, …
– Two ways to define workloads:

• Adjust parameters to an existing workload (via properties file)
• Define a new kind of workload (by writing Java code)

• Experiment – running a particular workload on a particular 
hardware setup to produce a single graph for 1 or N systems
– Example – vary throughput and measure latency while 

running a workload against Cassandra and HBase

• Workload package – A collection of related workloads
– E.g., CoreWorkload – a set of basic read/write workloads



Tier 1 CoreWorkload

• CoreWorkload defines:
– A parameterized data set

– A parameterized query

• Roughly: do a read, write, insert or scan with some 
probability on each request

– A set of parameters for the data set and queries

– This is sufficient to run a wide range of specific Workload 
instances

• E.g., 95/5 read/write, 95/2.5/2.5 read/write/insert, etc

• What if I want something other than these 
workloads?
– Abstract Workload class can be extended in YCSB with your 

own data set and query by writing Java code



Core Workload Package

• Workload A – Update heavy
– 50/50 read/write
– Update part of the record
– Zipfian request distribution
– Example app: session store recording 

recent actions

• Workload B – Read mostly
– 95/5 read/write
– Update whole record
– Zipfian request distribution
– Example app: photo tagging; add a 

tag is an update, but most operations 
are to read tags

• Workload C – Read only
– 100% read
– Zipfian request distribution
– Example app: user profile cache, 

where profiles are constructed 
elsewhere (e.g., Hadoop)

• Workload D - Read latest
– 95/0/5 read/write/insert
– “Latest” request distribution
– Example app: Twitter event store

• Workload E – Short ranges
– 95/5 scan/insert
– Zipfian request distribution
– Example app: threaded 

conversations, where each scan is for 
the posts in a given thread (assumed 
to be clustered by thread id)

– Note – inserts should be random 
LoadOrder

Goal: Define handful of workloads as the core “standard” workloads



Benchmark Tool
• Java application

– Many systems have Java APIs

– Other systems via HTTP/REST, JNI or some other solution

Workload 

parameter file

• R/W mix

• Record size

• Data set

• …

Command-line parameters

• DB to use

• Target throughput

• Number of threads

• …

YCSB client

D
B

 c
lie

n
t

Client 

threads

Stats

Workload 

executor C
lo

u
d
 D

B

Extensible: plug in new clientsExtensible: define new workloads



GridMix: Benchmarking Hadoop Analytics
citation

• Mix of synthetic jobs modeling a profile mined from 
production loads

• Emulates users and job queues

• Can emulate distributed cache files

• Can emulate (de-)compression,  high-RAM jobs, resource 
usage

• Simplifying assumptions about:

– File-system properties (other than bytes/records 
consumed/emitted)

• Record sizes / key distributions based on averages, i.e., no skew

– Job I/O rates and memory profiles 

– Jobs assumed to succeed; run independently of other jobs



TEXTURE: Benchmarking Performance of 
Text Queries on a Relational DBMS

Ercegovac, DeWitt, Ramakrishnan SIGMOD 05

• Queries with relevance ranking, instead of those that 
compute all answers
– Richer mix of text and relational processing

– Measures only performance, not quality

– Only queries; no updates, bulk-loading, or multi-user support

• Micro-benchmark where experiment is defined by selecting: 
– Dataset size: Data schema based on Wisconsin Benchmark, extending 

it with two (short, in-line with row; long, separate blob) text fields 
generated using TextGen

– Query workload: (1) text-only queries, (2) single-table mixed queries, 
and (3) multiple-table mixed queries. 

– Evaluation mode: (1) all results, (2) the first result, or (3) top-k results



TextGen: Synthetic Text Generator 
Ercegovac, DeWitt, Ramakrishnan SIGMOD 05

– Generates large text corpora that reflect (performance 
related) characteristics of a given “seed” corpus

– Features from seed that are maintained during scale up:
• Word Distribution W(w,c):  Associates with every unique word w in 

the corpus, the number of times c it appears in the corpus.

– Modeled by using same proportions as in seed

• Vocabulary Growth (G): Number of unique words grows as new 
documents are added to a corpus.

– Modeled using Heap’s law: G(x) = αxβ;  parameters estimated 
using least squares fit

• Unique Words per Document (U) and Document Length (D)

– Modeled using averages from seed corpus



BigBench: Benchmarking Hadoop Analytics
Ghazal et al., SIGMOD 13

• End-to-end big data benchmark proposal

• Data schemas extend TPC-DS
– Semi-structured component: Web clicks

– Unstructured: Product reviews

• Synthetic data generator
– Suggestion: Consider TextGen (from Texture!) for unstructured data

• Technical considerations in choosing workload:
– Data types involved; declarative or procedural; Statistical/mining/SQL

• Analytic workload based on McKinsey retail analytics report
– Associations, e.g., Cross-selling based on products purchased together

– Statistical, e.g., correlation of sales with competitor’s prices

– ML, e.g., sentiment analysis of product reviews

– SQL-based reports, e.g., 30-day sales before and after price change



DAP: Benchmarking ML Pipelines
Milind Bhandarkar with Vijay Narayanan

• Based on user-modeling pipeline workloads at 
Yahoo!

• Proposal:

– Pipelines constructed by mix and match of various stages

– Different analysis/modeling techniques per stage

– (Create a standardized version and) publish performance 
numbers for every stage



Data is the new gold, data 
mining the new Klondike

Big Data platforms fuse 
scale-out analytics and 
serving systems

Moving to the cloud: 
ComScore for DB services?

Convergence of analytics 

• Batch, interactive, real-time

Digital Shoebox trend

• Data variety: Structured, 
unstructured, streams, 
graphs, DNA, media, etc.

• Analytics variety: SQL, ML, BI

New things to measure

• Quality

• Elasticity

• Multitenancy


