
© 2010 VMware Inc. All rights reserved

Architecture and Performance characteristics of a

PostgreSQL implementation of the

TPC-E and TPC-V workloads

Andrew Bond (Red Hat), Doug Johnson (InfoSizing), Greg
Kopczynski (VMware), and H. Reza Taheri (VMware)

2 of 26

Agenda/Topics

 Virtualization and virtualization benchmarks

 Historical perspective of TPC-V

 TPC-V design considerations and characteristics

 TPC-V architecture

 End-to-end Reference Kit

 Prototyping results, and PostgreSQL characterization

 Benchmark roadmap

3 of 26

Virtualization and need for a database benchmark

 Virtualizing servers allows:

• consolidation

• Reduces both CapEx and OpEx

• Migration of VMs (both storage and CPU/memory)

• Enables live load balancing

• Facilitates maintenance

• High availability and fault tolerance

 Cloud computing is powered by virtualized servers

 Databases VMs are were the last frontier for virtualization

• Initial hesitation to put enterprise databases on VMs

• Followed by today’s push towards virtualizing everything

 We need a benchmark to model all this!

4 of 26

Today’s virtualization benchmarks

 VMmark

• Developed by VMware in 2007; now on version 2.5

• De facto industry standard with nearly 200+ publications from 11 vendors

• Released kit only runs on ESX, but can be modified for other hypervisors

• Models consolidation of lightly loaded VMs with diverse workloads

 SPECvirt_sc2010/SPECvirt_sc2013

• Industry standard, with 35 results from 4 vendors

• Models consolidation of lightly loaded VMs with diverse workloads

 TPC-VMS

• No results yet

• Models consolidation of 3 identical database VMs

• Test sponsors can use one of 4 existing TPC benchmark workloads

- Limited in scope of what virtualization features get tested

+But does not require a new kit

5 of 26

History of TPC-V

 2009 VLDB: We need a benchmark that:

• Models virtualized databases

• Is industry standard

 2010 VLDB: Proposal for a benchmark

• Steal TPC-E’s workload, schema, specification

• Baby bear # of VMs

• Model elasticity of load

 2012 VLDB: Status of the benchmark development

• Developing a complete, end-to-end , publicly-available kit

• Kit runs on PostgreSQL

• Finalized benchmark architecture

• Some early result

 This pace is lightening fast by TPC standards!

6 of 26

Components of a TPC-V configuration

Driver

System Under Test

Tier A & B

Group A, Set1

Tier A
VM1

Tier B

 VM2
Tier B

 VM3
Data

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

Group B, Set 1
Data

Data

Group D, Set 1
Data

Group C, Set 1

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

Tier A
VM1

Tier B

 VM2
Tier B

 VM3

Tier A
VM1

Tier B

 VM2
Tier B

 VM3

Tier A
VM1

Tier B

 VM2
Tier B

 VM3

7 of 26

Sets and Groups

 VMs with heterogeneous load levels

• Always 4 Groups @10%, 20%, 30%, 40%

 But the number of Sets per Group
grows with performance

• Small systems have 1 Set per Group

• Larger servers divide each Group’s load
among 2, 3, … Sets

 Total number of VMs on the server:

• 12 on small and medium-sized servers

• 24 on today’s high end

• 36-48 on high end in 5-10 years

Group: A B C D

Average contribution

to overall throughout

10% 20% 30% 40%

Tier B VM2,

DSS queries

Tier B VM3,

OLTP transactions

Tier A VM1, app logic code

Stored procedure calls

Transactions

arriving from

the driver

system

Virtual disks Virtual disks

Group A, Set 1 VM1 A1 VM2 A1

VM3 A1

Group B , Set 1 VM1 B1 VM2 B1 VM3 B1

Group C , Set 1 VM1 C1 VM2 C1 VM3 C1

Group D , Set 1 VM1 D1 VM2 D1 VM3 D1

3 VMs of a TPC-V

Set

4 TPC-V Groups, each with 1 Set

8 of 26

Elasticity

 Load of each VM ranges by as much
as 16X in ten 12-minute Phases

• Elasticity

• Oversubscription

Period

Group

A

Group

B

Group

B

Group

D

1 10% 20% 30% 40%

2 5% 10% 25% 60%

3 10% 5% 20% 65%

4 5% 10% 5% 80%

5 10% 5% 30% 55%

6 5% 35% 20% 40%

7 35% 25% 15% 25%

8 5% 65% 20% 10%

9 10% 15% 70% 5%

10 5% 10% 65% 20%

Average 10% 20% 30% 40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

D
iv

is
io

n
 o

f
o

v
e

ra
ll

th
ro

u
g

h
p

u
t
o

v
e

r
th

e

4
 G

ro
u

p
s
 o

f
T

P
C

-V

Group A Group B Group C Group D

Elasticity phase

9 of 26

Design Considerations

 Driver code in Java; transaction-specific code in C++ to
match EGen/VGen

 Walk before you run: a TPC-E kit first

 ODBC allows easier database swapping

• Albeit with a performance cost

• We can replace ODBC with native calls for best performance

 Develop initial kit on PostgreSQL

• But ODBC makes it possible to run against other databases

 Make the kit available to anyone, subject to a EULA

10 of 26

Java/C++ Class Interaction

COMMON

CustomerEmulator

DataMaintenance

DMSUT

MEESUT

CESUT

MktExchange

SutConnector TradeOrderDB

BrokerVolumeDB

CustomerPositionDB

TradeStatusDB

TxnHarnessSen

dToMarket

Java

C/C++

Driver SUT (Tier A)

JNI

RMI
C/C+

+

VCe

VMee

VConnector

VDriver

11 of 26

Request Code Execution Path

12 of 26

Driver components

13 of 26

Status of the kit

 We have a complete, end-to-end TPC-E kit

• This is TPC-E, so 1 database, static load

• Scripts to create the schema and populate the database

• All the necessary DDL/DML

• C++ code to implement the business logic

• Java driver to drive the load and collect and process the results

• Handles multiple Sets and Groups, and elasticity

• Linux shell scripts to start and monitor the run, and collect stats

 The kit implements all the multi-VM and elasticity features of
TPC-V

• Need to change the code for 2 transactions that are different in TPC-V

 Busy prototyping!

14 of 26

TPC-E results with a single database VM

 Single VM/database (emulating TPC-E)

 4-socket HP ProLiant DL580 G7 server

• 2.40GHz Intel Xeon E7-4870 (WestmereEX) CPUs

• So total of 40 cores/80 hyperthreads

• 1TB of memory

• Disclosed TPC-E result: 2,454 tpsE

• Other results on similar servers as high as 3,XXX tpsE

• Two EMC VNX5700 disk arrays. 38 SSDs and 88 spinning disk drives

 Running TPCE on a VM with 16-vCPU, 280GB Tier B VM

• So using 1/5th of the hardware resources

 Software versions:

• VMware vSphere 5.1

• RHEL 6.1

• PGSQL 9.2.2

• unixODBC 2.2.14

15 of 26

TPC-E prototyping results

 Measuring 198 tpsE on the 16-vCPU VM

• Performance is decent for this stage of development

• 1/13th of disclosed results on this server, but using 1/5th the resources

• So our performance is 1/3 to 1/2 of commercial databases

• 2 orders of magnitude higher than dbt5 experimental results

• 85% CPU utilization

• 19K IOPS, 212MB/sec

 I/O rate appears to be our biggest problem

• High IOPS even though we have cut the DB size by 60%

• IOPS/tran around 2X what commercial database does

• PostgreSQL buffer management and file system relationship
unknowns

• Lack of clustered indexes

• On-disk size appears as much as 20% larger

16 of 26

PostgreSQL tuning: File systems

 This data is from when we separated the OLTP and DSS
transactions into two different VMs

 Definitely should separate the log and data file systems

• So data blocks don’t get flushed every time we write to the log

• 6% more throughput

• Lower response times

 Use ext4 for data

• ext3 is fine for log

 DSS Trans wrqm/s r/s w/s rkB/s wkB/s avgrq-
sz

avgqu-
sz await

1 file system Data +log 1830 11151 2767 138602 33956 25 30 2.14

2 file systems
data 2406 12350 2278 181902 18737 27 40 2.71

log 343 0.34 134 1 17854 264 0.3 1.87

 OLTP Trans wrqm/s r/s w/s rkB/s wkB/s avgrq-
sz

avgqu-
sz await

1 file system Data +log 403 542 476 7682 5552 27 5.1 4.75

2 file systems
Data 194 860 145 15613 1357 34 6.3 6.29

log 1 0.04 225 0.16 3066 27 0.3 1.15

17 of 26

PostgreSQL tuning: File systems, continued

 PostgreSQL folks like to encourage you to use the file system

• No! They insist that relying on the filsys buffer cache is the only way to go

 Being an old database hand, you have to show me why this is
so

• Double buffering wastes memory

• Once you miss in the DBMS cache, you pay most of the price in OS cycle
whether or not you hit in the buffer cache

 I have been trying to max out PostgreSQL shared_buffers

• Ignoring the PostgreSQL book advice

• Hard to shrink file system buffer cache when raising shared_buffers

• End up swapping

• I have to reboot the VM

 But going from 34GB of shared_buffers to 200GB improves
performance only 5%

• PostgreSQL/filsys interaction problem?

• Or TPC-E benefits from DBMS cache reaching diminishing returns?

18 of 26

PostgreSQL tuning: checkpoints

 Watch the number of 16MB checkpoint_segments

• On a high throughput system, this will decide checkpoint frequency

• Default of only 3 checkpoint_segments way too low

• Even with 128 checkpoint_segments, we were checkpointing every
2 minutes

• Raised to 1,920 on the largest VM to checkpoints every 30 minutes

Checkpoint metric 128 segments 5,120 segments

checkpoints_timed 0 1

checkpoints_req 15 0

buffers_checkpoint 4,437,177 956,174

buffers_clean 14,069 852,893

buffers_backend 46,297 39,297

buffers_alloc 24,831,473 23,749,499

19 of 26

PostgreSQL tuning: Index-only scans

 TPC-E transactions need clustered indexes

• All published TPC-E results have used MS SQL Server

• They create clustered indexes on ALL 33 tables

• (Secondary) indexes not used very often

 PostgreSQL does not have clustered indexes

• Every data access has to read both the index block and the data block

• Indexes are not much smaller than tables

• Plus, PostgreSQL on-disk footprint is larger

 Switched to Index-only scans with PostgreSQL 9

• But works only if all the columns named in the query are in the index

• So have to create many, multi-column indexes

• Index size grows quickly

• After a week of runs, TRADE data blocks grew 4%, index blocks 40%

20 of 26

PostgreSQL tuning: Index-only scans, continued

 Note the index size for TRADE_HISTORY

• Even having Index-only scans doesn’t reduce how much data we juggle

Table MS SQL PostgreSQL

Table

size

Index

size

of

indexes

Table

size

Index

size

of

indexes

CASH_TRANSACTION 125GB 0.45GB 1 146GB 140GB 1

DAILY_MARKET 8.7GB 3.6GB 1 11GB 4.7GB 1

HOLDING_HISTORY 67GB 35GB 2 93GB 125GB 2

NEWS_ITEM 21GB 0.0003GB 1 20GB 0.003GB 1

SETTLEMENT 68GB 0.3GB 1 91GB 78GB 1

TRADE 153GB 82GB 3 176GB 135GB 3

TRADE_HISTORY 96GB 0.25GB 1 168GB 124GB 1

21 of 26

Server configuration for TPC-V prototyping

 Carve out the 80-thread, 1TB server into:

• 4 Groups, each with 1 Set of 3 VMs

• 12 VMs

• 4 Tier A VMs (VM1s of Groups A-D) with 2GB of memory and 3-8 vCPUs

• These Tier A VMs have low resource demands

• 4 DSS Tier B VMs (VM2s of Groups A-D) with 88-278GB of memory and 4-
16 vCPUs

• High I/O load (hence more memory to cache more of the database)

• 4 OLTP Tier B VMs (VM3s of Groups A-D) with GB of 39-78GB of memory
and 12-40 vCPUs

• Low I/O load but high CPU demands

• Overall CPU allocation is overcommitted by 2X (168 vCPUs)

• No memory overcommit

• Not recommended for database VMs

22 of 26

Throughput and CPU utilization of 12 VMs with static load

 No elasticity

• Static load to all VMs over
the 2 hours

 Throughput droped with
time as CPU util% rises

• Something wrong with VM
C3. It utilization keeps rising,
even above VM D3, despite
static load

• Early results. Our databases
are better tuned now

 Server 85-95% utilized

0

200

400

600

800

1000

1200

1400

1600

1
1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1

C
P

U
 u

ti
li
z
a
ti

o
n

 o
u

t
o

f
in

d
iv

id
u

a
l
V

M
s

Minutes

Per VM CPU utilization

VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

VM D3

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

T
h

ro
u

g
h

p
u

t

T
o

ta
l
C

P
U

 u
s
a
g

e
 (

o
u

t
o

f
8
,0

0
0
%

)

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

23 of 26

Throughput and CPU utilization of 12 VMs with elasticity

 Hypervisor has to react to
16X variation in load

• Change how much CPU is
allocated to each VM

 Overall CPU util% and
throughput matches the
static case in Phases 1 and 6
(no I/O bottleneck)

 The dips are the sign of the
benchmark doing its job!!

• Caused by storage for a VM
getting overwhelmed

• When a VM’s storage can’t keep
up, its throughput drops

• Kit maintains the ratios between
all Groups, so overall throughput
drops

0

500

1000

1500

2000

2500

1
1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1

C
P

U
 u

ti
li
z
a
ti

o
n

 o
u

t
o

f
in

d
iv

id
u

a
l
V

M
s

Minutes

Per VM CPU utilization

VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

VM D3

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

T
h

ro
u

g
h

p
u

t

C
P

U
 u

s
a
g
e
 o

u
t

o
f

a
 p

o
s
s
ib

le
 8

,0
0
0
%

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

24 of 26

Status of the kit and of the benchmark

 Functional specification in good shape, waiting for kit completion

 End-to-end kit running complete TPC-E workload

 Kit running all novel TPC-V functions, waiting for rewriting 2
transactions

 Would like to see more internal TPC prototyping before releasing
to the wild

 Much PostgreSQL tuning remains

• Both CPU cycles and IOPS/tran are over 2X of commercial databases

• Will engage the community

• Is the community interested in matching commercial databases?

 Will consider engaging groups outside TPC in the development
process

• Not typical for the TPC

• But we will make the case for it if we can demonstrate serious commitment

25 of 26

Future directions

 Complete the kit!

• Make it available for prototyping

 Complete the spec

• Kit will become publicly available when the benchmark is released

• Need to release this benchmark in 2014

 Single-system virtualization no longer exciting!

 Can we model a cloud-like, multi-server config?

• The benchmark and the kit already deal with elastic load to 1 server.
Extend this to elasticity and migrations across multiple servers

• Intuitively, a simple step from where we are

• But need to come up with migration scenarios w/o too much
choreographing

• Avoid deep pocket escalation wars with bigger and bigger clusters

• Add deployment and provisioning

26 of 26

Questions?

