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Agenda/Topics 

 Virtualization and virtualization benchmarks 

 Historical perspective of TPC-V 

 TPC-V design considerations and characteristics 

 TPC-V architecture 

 End-to-end Reference Kit 

 Prototyping results, and PostgreSQL characterization 

 Benchmark roadmap 
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Virtualization and need for a database benchmark 

 Virtualizing servers allows: 

• consolidation 

• Reduces both CapEx and OpEx 

• Migration of VMs (both storage and CPU/memory) 

• Enables live load balancing 

• Facilitates maintenance 

• High availability and fault tolerance 

 Cloud computing is powered by virtualized servers 

 Databases VMs are were the last frontier for virtualization 

• Initial hesitation to put enterprise databases on VMs 

• Followed by today’s push towards virtualizing everything 

 We need a benchmark to model all this! 
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Today’s virtualization benchmarks 

 VMmark 

• Developed by VMware in 2007; now on version 2.5 

• De facto industry standard with nearly 200+ publications from 11 vendors 

• Released kit only runs on ESX, but can be modified for other hypervisors 

• Models consolidation of lightly loaded VMs with diverse workloads 

 SPECvirt_sc2010/SPECvirt_sc2013 

• Industry standard, with 35 results from 4 vendors 

• Models consolidation of lightly loaded VMs with diverse workloads 

 TPC-VMS 

• No results yet 

• Models consolidation of 3 identical database VMs 

• Test sponsors can use one of 4 existing TPC benchmark workloads 

- Limited in scope of what virtualization features get tested 

+But does not require a new kit 
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History of TPC-V 

 2009 VLDB: We need a benchmark that: 

• Models virtualized databases 

• Is industry standard 

 2010 VLDB: Proposal for a benchmark 

• Steal TPC-E’s workload, schema, specification 

• Baby bear # of VMs 

• Model elasticity of load 

 2012 VLDB: Status of the benchmark development 

• Developing a complete, end-to-end , publicly-available kit 

• Kit runs on PostgreSQL 

• Finalized benchmark architecture 

• Some early result 

 This pace is lightening fast by TPC standards! 
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Components of a TPC-V configuration 
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Sets and Groups 

 VMs with heterogeneous load levels  

• Always 4 Groups @10%, 20%, 30%, 40% 

 But the number of Sets per Group 
grows with performance 

• Small systems have 1 Set per Group 

• Larger servers divide each Group’s load 
among 2, 3, … Sets 

 Total number of VMs on the server: 

• 12 on small and medium-sized servers 

• 24 on today’s high end 

• 36-48 on high end in 5-10 years 

Group: A B C D 
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Elasticity 

 Load of each VM ranges by as much 
as 16X in ten 12-minute Phases 

• Elasticity 

• Oversubscription 
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Design Considerations 

 Driver code in Java; transaction-specific code in C++ to 
match EGen/VGen 

 Walk before you run: a TPC-E kit first 

 ODBC allows easier database swapping 

• Albeit with a performance cost 

• We can replace ODBC with native calls for best performance 

 Develop initial kit on PostgreSQL 

• But ODBC makes it possible to run against other databases 

 Make the kit available to anyone, subject to a EULA 
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Java/C++ Class Interaction 
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Request Code Execution Path 
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Driver components 
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Status of the kit 

 We have a complete, end-to-end TPC-E kit 

• This is TPC-E, so 1 database, static load 

• Scripts to create the schema and populate the database 

• All the necessary DDL/DML 

• C++ code to implement the business logic 

• Java driver to drive the load and collect and process the results 

• Handles multiple Sets and Groups, and elasticity 

• Linux shell scripts to start and monitor the run, and collect stats 

 The kit implements all the multi-VM and elasticity features of 
TPC-V 

• Need to change the code for 2 transactions that are different in TPC-V 

 Busy prototyping! 
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TPC-E results with a single database VM 

 Single VM/database (emulating TPC-E) 

 4-socket HP ProLiant DL580 G7 server 

• 2.40GHz Intel Xeon E7-4870 (WestmereEX) CPUs 

• So total of 40 cores/80 hyperthreads 

• 1TB of memory 

• Disclosed TPC-E result: 2,454 tpsE 

• Other results on similar servers as high as 3,XXX tpsE 

• Two EMC VNX5700 disk arrays. 38 SSDs and 88 spinning disk drives 

 Running TPCE on a VM with 16-vCPU, 280GB Tier B VM 

• So using 1/5th of the hardware resources 

 Software versions: 

• VMware vSphere 5.1 

• RHEL 6.1 

• PGSQL 9.2.2 

• unixODBC 2.2.14 
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TPC-E prototyping results 

 Measuring 198 tpsE on the 16-vCPU VM 

• Performance is decent for this stage of development 

• 1/13th of disclosed results on this server, but using 1/5th the resources 

• So our performance is 1/3 to 1/2 of commercial databases 

• 2 orders of magnitude higher than dbt5 experimental results 

• 85% CPU utilization 

• 19K IOPS, 212MB/sec 

 I/O rate appears to be our biggest problem 

• High IOPS even though we have cut the DB size by 60% 

• IOPS/tran around 2X what commercial database does 

• PostgreSQL buffer management and file system relationship 
unknowns 

• Lack of clustered indexes 

• On-disk size appears as much as 20% larger 
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PostgreSQL tuning: File systems 

 This data is from when we separated the OLTP and DSS 
transactions into two different VMs 

 Definitely should separate the log and data file systems 

• So data blocks don’t get flushed every time we write to the log 

• 6% more throughput 

• Lower response times 

 Use ext4 for data 

• ext3 is fine for log 

 DSS Trans   wrqm/s r/s w/s rkB/s wkB/s avgrq-
sz 

avgqu-
sz await 

1 file system Data +log 1830 11151 2767 138602 33956 25 30 2.14 

2 file systems 
data 2406 12350 2278 181902 18737 27 40 2.71 

log 343 0.34 134 1 17854 264 0.3 1.87 

 OLTP Trans   wrqm/s r/s w/s rkB/s wkB/s avgrq-
sz 

avgqu-
sz await 

1 file system Data +log 403 542 476 7682 5552 27 5.1 4.75 

2 file systems 
Data 194 860 145 15613 1357 34 6.3 6.29 

log 1 0.04 225 0.16 3066 27 0.3 1.15 
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PostgreSQL tuning: File systems, continued 

 PostgreSQL folks like to encourage you to use the file system 

• No! They insist that relying on the filsys buffer cache is the only way to go 

 Being an old database hand, you have to show me why this is 
so 

• Double buffering wastes memory 

• Once you miss in the DBMS cache, you pay most of the price in OS cycle 
whether or not you hit in the buffer cache 

 I have been trying to max out PostgreSQL shared_buffers 

• Ignoring the PostgreSQL book advice 

• Hard to shrink file system buffer cache when raising shared_buffers 

• End up swapping 

• I have to reboot the VM 

 But going from 34GB of shared_buffers to 200GB improves 
performance only 5% 

• PostgreSQL/filsys interaction problem? 

• Or TPC-E benefits from DBMS cache reaching diminishing returns? 
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PostgreSQL tuning: checkpoints 

 Watch the number of 16MB checkpoint_segments  

• On a high throughput system, this will decide checkpoint frequency 

• Default of only 3 checkpoint_segments way too low 

• Even with 128 checkpoint_segments, we were checkpointing every 
2 minutes 

• Raised to 1,920 on the largest VM to checkpoints every 30 minutes 

Checkpoint metric 128    segments 5,120 segments 

checkpoints_timed 0 1 

checkpoints_req 15 0 

buffers_checkpoint 4,437,177 956,174 

buffers_clean 14,069 852,893 

buffers_backend 46,297 39,297 

buffers_alloc 24,831,473 23,749,499 
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PostgreSQL tuning: Index-only scans 

 TPC-E transactions need clustered indexes 

• All published TPC-E results have used MS SQL Server 

• They create clustered indexes on ALL 33 tables 

• (Secondary) indexes not used very often 

 PostgreSQL does not have clustered indexes 

• Every data access has to read both the index block and the data block 

• Indexes are not much smaller than tables 

• Plus, PostgreSQL on-disk footprint is larger 

 Switched to Index-only scans with PostgreSQL 9 

• But works only if all the columns named in the query are in the index 

• So have to create many, multi-column indexes 

• Index size grows quickly 

• After a week of runs, TRADE data blocks grew 4%, index blocks 40% 
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PostgreSQL tuning: Index-only scans, continued 

 Note the index size for TRADE_HISTORY 

• Even having Index-only scans doesn’t reduce how much data we juggle 

Table MS SQL PostgreSQL 

Table 

size 

Index 

size 

# of 

indexes 

Table 

size 

Index 

size 

# of 

indexes 

CASH_TRANSACTION 125GB 0.45GB 1 146GB 140GB 1 

DAILY_MARKET 8.7GB 3.6GB 1 11GB 4.7GB 1 

HOLDING_HISTORY 67GB 35GB 2 93GB 125GB 2 

NEWS_ITEM 21GB 0.0003GB 1 20GB 0.003GB 1 

SETTLEMENT 68GB 0.3GB 1 91GB 78GB 1 

TRADE 153GB 82GB 3 176GB 135GB 3 

TRADE_HISTORY 96GB 0.25GB 1 168GB 124GB 1 
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Server configuration for TPC-V prototyping 

 Carve out the 80-thread, 1TB server into: 

• 4 Groups, each with 1 Set of 3 VMs 

• 12 VMs 

• 4 Tier A VMs (VM1s of Groups A-D) with 2GB of memory and 3-8 vCPUs 

• These Tier A VMs have low resource demands 

• 4 DSS Tier B VMs (VM2s of Groups A-D) with 88-278GB of memory and 4-
16 vCPUs 

• High I/O load (hence more memory to cache more of the database) 

• 4 OLTP Tier B VMs (VM3s of Groups A-D) with GB of 39-78GB of memory 
and 12-40 vCPUs 

• Low I/O load but high CPU demands 

• Overall CPU allocation is overcommitted by 2X (168 vCPUs) 

• No memory overcommit 

• Not recommended for database VMs 
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Throughput and CPU utilization of 12 VMs with static load 

 No elasticity 

• Static load to all VMs over 
the 2 hours 

 Throughput droped with 
time as CPU util% rises 

• Something wrong with VM 
C3. It utilization keeps rising, 
even above VM D3, despite 
static load 

• Early results. Our databases 
are better tuned now 

 Server 85-95% utilized 
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Throughput and CPU utilization of 12 VMs with elasticity 

 Hypervisor has to react to  
16X variation in load 

• Change how much CPU is 
allocated to each VM 

 Overall CPU util% and 
throughput matches the 
static case in Phases 1 and 6 
(no I/O bottleneck) 

 The dips are the sign of the 
benchmark doing its job!! 

• Caused by storage for a VM 
getting overwhelmed 

• When a VM’s storage can’t keep 
up, its throughput drops 

• Kit maintains the ratios between 
all Groups, so overall throughput 
drops 
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Status of the kit and of the benchmark 

 Functional specification in good shape, waiting for kit completion 

 End-to-end kit running complete TPC-E workload 

 Kit running all novel TPC-V functions, waiting for rewriting 2 
transactions 

 Would like to see more internal TPC prototyping before releasing 
to the wild 

 Much PostgreSQL tuning remains 

• Both CPU cycles and IOPS/tran are over 2X of commercial databases 

• Will engage the community 

• Is the community interested in matching commercial databases? 

 Will consider engaging groups outside TPC in the development 
process 

• Not typical for the TPC 

• But we will make the case for it if we can demonstrate serious commitment 
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Future directions 

 Complete the kit! 

• Make it available for prototyping 

 Complete the spec 

• Kit will become publicly available when the benchmark is released 

• Need to release this benchmark in 2014 

 Single-system virtualization no longer exciting! 

 Can we model a cloud-like, multi-server config? 

• The benchmark and the kit already deal with elastic load to 1 server. 
Extend this to elasticity and migrations across multiple servers 

• Intuitively, a simple step from where we are 

• But need to come up with migration scenarios w/o too much 
choreographing 

• Avoid deep pocket escalation wars with bigger and bigger clusters 

• Add deployment and provisioning 
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Questions? 


