
A PRACTICE OF TPC-DS MULTIDIMENSIONAL

IMPLEMENTATION ON NOSQL DATABASE SYSTEMS

HONGWEI ZHAO AND XIAOJUN YE

HWZHAO73@GMAIL.COM, YEXJ@TSINGHUA.EDU.CN

SCHOOL OF SOFTWARE, TSINGHUA UNIVERSITY

BEIJING 100084,CHINA

mailto:hwzhao73@gmail.com
mailto:yexj@tsinghua.edu.cn

OUTLINE

Motivation

• Methodology for MOLAP

• Description for MOALP engine

• Experimenting

• Conclusion

MOTIVATION

 Practice MOLAP cube operations on NoSQL Databases:

• OLAP operation implementation techniques

• Interactive queries experiments and analysis

Input data pre-aggregations roll-up/drill-downs

 Input data aggregations at runtime roll-up/drill-downs

Low-latency on OLAP

Low-latency on NoSQL sytems?

WHY MOLAP

 MOLAP is online analytical processing that indexes directly
into a multidimensional database

 User can be able to view different aspects or facets of data
aggregates stored in a multidimensional array

 The limitations in MOLAP are that it is not very scalable and
can only handle limited amounts of data since calculations are
predefined (storage and cache) in the cube

• Not all dimensions are used in a query

• Not all queries are used with the same frequency

• ... …

 OLAP engine practice on NoSQL systems for low-latency？

• Space & Efficiency

• Better scalability

WHEN AGGREGATING

Advantage

• Most flexible

• Fast – scatter gather

• Space efficient

Disadvantage

• I/O, CPU intensive

• Slow for larger data

• Low throughput

Advantage

• Fast

• Efficient – O(1)

• High throughput

Disadvantage

• More effort to process

(latency)

• Combinatorial explosion

(space)

• No flexibility

Cosmin Lehene Low Latency “OLAP” with HBase - HBaseCon 2012

Aggregate at runtime Pre-aggregate

http://www.slideshare.net/clehene/low-latency-olap-with-hbase-hbasecon-2012
http://www.slideshare.net/clehene/low-latency-olap-with-hbase-hbasecon-2012
http://www.slideshare.net/clehene/low-latency-olap-with-hbase-hbasecon-2012
http://www.slideshare.net/clehene/low-latency-olap-with-hbase-hbasecon-2012

BALANCE FOR AGGREGATION

 Our solution:

• Pre-aggregate base cuboid based on data model,

Aggregate other cuboids at runtime according to user

queries

• Space efficient

• Efficient O(1) after first query: high throughput

• More flexible for user queries

 Latency balanced in basic cuboid building and user querying

OUTLINE

• Motivation

 Methodology for MOLAP

• Description for MOALP engine

• Experimenting

• Conclusion

ETL FOR CUBE BUILDING

TPC-DS data files Star schema Cube data

User queries

Cube Lattice

Cube Instance

Cuboid Instance

CUBE MODEL ON KEY-VALUE

STORES

Cuboid Instance
Dimension

Instance

Dimension

Instance

Cube

Metadata

Dimension

Instance

Cuboid Instance

Key Member

Key Member
Key

Dimensio

n Member

Key
Measure

Node Key
Measure

Node Key
Measure

Cell

ABC

AB

A

AC

B

BC

C

*

Base Cuboid

EXAMPLE: TPC-DS QUERY 7

select i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2,

avg(ss_coupon_amt) agg3, avg(ss_sales_price) agg4

from store_sales, customer_demographics, date_dim, item, promotion

where ss_sold_date_sk = d_date_sk and

 ss_item_sk = i_item_sk and

 ss_cdemo_sk = cd_demo_sk and

 ss_promo_sk = p_promo_sk and

 cd_gender = '[GEN]' and

 cd_marital_status = '[MS]' and

 cd_education_status = '[ES]' and

 (p_channel_email = 'N' or p_channel_event = 'N') and

 d_year = [YEAR]

 group by i_item_id

 order by i_item_id

MDX FOR QUERY 7

select { i_item_id } on rows,

 { avg(ss_quantity), avg(ss_list_price),

 avg(ss_coupon_amt),

avg(ss_sales_price) }

 on columns

from store_sales_cube

where (cd_gender .[Male],

 cd_marital_status .[Single],

 cd_education_status .[College],

 d_year.[2000])

STAR SCHEMA FOR QUERY 7, 42,

52, 55

Store

Sales

Date Dim

Item Promotion

Customer

Demographics

date_sk cdemo_sk .. price

3617 280 46.03

3428 172 99.54

… … .. …

date_sk year moy dom

3428 2001 12 21

3617 2003 8 15

cdemo_sk gender marital education

172 M single 4-years

280 F married master

a) Fact table in star schema

year_key year

001 2001

011 2003

mon_key mon

1000 8

1100 12

day_key day

01111 15

10101 21

gen_key gen

01 M

10 F

mar_key mar

001 single

011 married

edu_key edu

010 4-years

100 master

bitmap key avg(price)

011100001111 10011100 46.03

001110010101 01001010 99.54

… …

b) Cuboid cells from decomposed fact table

CUBOID KEY CONSTRUCTION

CUBE DATA STORAGE

Table

Region

ColumnFamily

Row

Column

Version

Value

Cuboid

Cell

One table for dimension instances storage:

Row Key Dimension Name

Column

Family

Default

Column Member BitKey

Value Member Value

Multiple tables for cuboids instances

Table Name Cuboid Name

Row Key Cell BitKey

Column

Family

Default

Column Measure Name

Value Measure Value

CUBE DATA STORAGE FOR

EXAMPLE

Row Key Column Family: default

Dimension

A

Mask 000001 001000 001001

001001 A1 A2 A3

Dimension

B

Mask 000010 100000

100010 B1 B2

Row Key Column Family: default

000111

Mea_count Mea_sum

1 M1

011010

Mea_count Mea_sum

1 M2

Table: Dimension

Table: Cuboid_ABC

OUTLINE

• Motivation

• Methodology for MOLAP

 Description for MOALP engine

• Experimenting

• Conclusion

ARCHITECTURE OF PROTOTYPE

Data files

Key-Value

Storage

OLAP Engine

Initialize

Dimension

Projection

+ Join

Pre-

aggregation

for base

cuboid

RDBMS/

Hive

Aggregation

for cuboids

at runtime
Filter +

Sort Processing

Basic Cuboid Building Engine

OLAP Queries

OLAP System

E
n

g
in

e

K
e

y
-V

a
lu

e
 D

a
ta

b
a

s
e

Master

Node

Region Node
Region Node

Dispatcher

Node

Worker Node

Region Node

Worker Node
Worker Node

cache

data

Cube

data

ARCHITECTURE OF PROTOTYPE

 Dispatcher Node

 Worker Nodes

• Distribute dynamically

cubes data onto

worker nodes

• Parallelize OLAP

operations into a

concurrent model

Cluster Framework

IMPLEMENTATION STEPS

 Base cuboid building with 4 stages:

• Dimension constructing

• Hive query

• Aggregation

• Saving

 OLAP Query execution with 4 stages:

• Loading dimension

• Other cuboid constructing

• Mapping

• Reducing

ACTORS OF AKKA FRAMEWORK

State

Behavior

Mailbox

Lifecycle

Fault tolerance

Execute OLAP Queries

Query

Dispatcher
Cuboid

Manager
Dimension

Manager

Mapper Reducer

1 2

3
4

require

Cuboid

ready

Dimensio

n load

data

ready

Extract

Query

Hit Cell

Hit Cell

ACTORS FOR OLAP QUERIES

 Load dimension

members

 Build other cuboids

 Mapping

 Reducing

Mapper 1

R1

Region for

base cuboid

cache

partition

Sorted aggregations

Reducer 1

Merged aggregations

R1

Region for

other cuboid

Mapper 2

R2

Region for

base cuboid

cache

partition

Sorted aggregations

Reducer 2

Merged aggregations

R2

Region for

other cuboid

Mapper n

Rn

Region for

base cuboid

cache

partition

Sorted aggregations

Reducer m

Merged aggregations

R…

Region for

other cuboid

…

…

Spill to

partitioned

actors

Local

merge

Remote

merge

Save to

HBase

DATA FLOW FOR OTHER CUBOID

Load from

HBase

COMPILING &

MAPPING

Query 7 Condition:

GEN=M and MS=S and ES=College and YEAR=2000

GEN Mask: 000000011 Male 000000010

MS Mask: 000011100 Single : 000001100

ES Mask: 001100000 College: 001000000

YEAR Mask: 110000000 2000: 010000000

Mask: 111111111

FilterKey: 011001110

Query

Dispatcher

Mapper1

Mapper2

Mapper3

For each cell in mapper

{

 If (key & mask

 == Filter Key)

 Send to Reducer

}

Region 1

Region 2

Region 3

Worker

Worker

Worker

Master

messages

results

Cache 1

Cache 2

Cache 3

OLAP QUERY EXECUTION

• Master sends task messages to workers

• Each worker caches local region data

• Queries reuse the cache data sequentially

Matei Zaharia: Overview of Spark

http://spark-project.org/talks/overview.pptx
http://spark-project.org/talks/overview.pptx
http://spark-project.org/talks/overview.pptx
http://spark-project.org/talks/overview.pptx

OUTLINE

• Motivation

• Methodology for MOLAP

• Description for MOALP engine

 Experimenting

• Conclusion

EXPERIMENTS ON TPC-DS

 1G 10G 100G

records

number
2,653,108 26,532,571 265,325,821

cube cell

number
2,543,842 24,639,263 189,298,704

Storage In

HBase
4*64M 64*64M 256*64M

3 nodes:

• 2*Intel Xeon CPU E5-2630

• 4*600G 15000r/s SAS Raid 1+0

• 256G RAM

• 10Gb Network

Dimensions:

1. "i_item_id",

2. "i_category“

3. "i_manager_id“

4. "i_brand",

5. "cd_gender",

6. "cd_marital_status",

7. "cd_education_status",

8. "p_channel_email",

9. "p_channel_event",

10. "d_year“

11. “d_moy”

Measures:

ss_quantity, ss_list_price,

ss_coupon_amt, ss_sales_price,

ss_ext_sales_price

4 Queries:

• Query 7

• Query 42

• Query 52

• Query 55

BUILD CUBE FOR QUERIES

• Partition by the largest

dimension(i_item_id)

• In-memory aggregation

• Saving stage can be

ignore(cache)

• Logarithmic scale

 1 10 100 1000 10000 100000

100G

10G

1G

initializing

querying

aggregating

saving

EXECUTE QUERY 7, 42, 52, 55
 Stages for first query executing

• Dimension loading

• Caching

• Mapping

• Reducing

 Stages for later queries executing:

• Mapping

• Reducing

1

10

100

1000

10000

1G 10G 100G

Caching Base Cuboid

cache

0

10

20

30

40

50

60

70

query 7 query 42 query 52 query 55

1G

10G

100G

second

CONCURRENT QUERIES

EXECUTING
 Sequence VS concurrency

0

5

10

15

20

25

Sequential Concurrent

query 55

query 52

query 42

query 7

Results on 1G data

0

10

20

30

40

50

60

70

80

90

Sequential Concurrent

query 55

query 52

query 42

query 7

Results on 10G data

COMPARE WITH ROLAP

execution time in out-of-the-box setting:

 14-56X

1G 10G 100G
query 7 14X 24X 19X
query 42 53X 49X 48X
query 52 53X 56X 50X
query 55 40X 56X 39X

CONCLUSIONS

A MOLAP prototype on NoSQL databases:

• Basic OLAP operation implementation

• Some queries experiments and analysis

 Other experiments on TPC-DS queries

• Report, ad hoc, iterative, data mining, … …

More work on multidimensional benchmarking

• Choice of cube model :

• Demand-driven & data-driven

• Generation for cube data:

• Model-driven & requirement-driven

Q U E S T I O N S

A N S W E R S

