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Online Transaction Processing
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Characteristics:

— Has many concurrent requests
— Touch small part of whole data
— Need high & predictable performance

Primary application for databases



Hardware OLTP runs on
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SMT multisocket multicores heterogeneous many-cores

Hardware keeps providing new forms of parallelism
How’s the utilization?



Utilizing modern processors
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Processor stalled most of the time



Scaling up OLTP on multisockets

—

Throughput

| | | | | | |

1 2 3 45 6 7 8
Number of sockets

Multisocket servers severely under-utilized




Why care about power?
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Energy efficiency as important as performance



 Why is my system under-utilizing hardware?

* Why isn’t my system faster on new hardware?

* Are new processors more energy-efficient?
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Analyzing performance and energy

e Macrobenchmarks or Microbenchmarks?
e Execution time breakdowns

 Measuring energy efficiency



Analyzing performance and energy

* Macrobenchmarks or Microbenchmarks?
e Execution time breakdowns

 Measuring energy efficiency



Instructions per Cycle

Utilization (microarchitecture level)
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TPC-E has higher IPC



Macrobenchmark: Execution Cycles & Stalls

Intel Xeon X5660 [EDBT13]
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Over 70% of time goes to stalls
Instruction stalls are the main problem



[SIGMOD16]

Utilization across systems | e woes

1 worker thread
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Even in-memory systems stall > 60% time

Execution cycles breakdown




[SIGMOD16]

Microbenchmarks for what-if analysis
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Lower data locality = low IPC for some systems



[PVLDB12]

OLTP on hardware islands
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How measure impact?



[PVLDB12]

Partition sensitive microbenchmark

* Single site version
— probe/update N rows from the local site

e Multisite version

— probe/update 1 row from the local site
— probe/update N-1 rows uniformly from any site
— sites may reside on the same instance




[PVLDB12]

OLTP deployment configurations
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[PVLDB12]

Multisite transactions: read only
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More instances -> faster performance degradation



[PVLDB12]

Multisite transactions: updates
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Update distributed transactions are more expensive



Analyzing performance and energy

e Execution time breakdowns

 Measuring energy efficiency



My first toy: Pll Xeon
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+Branch prediction, non-blocking caches, out-of-order



Where Does Time Go?

[VLDB99]

* Computation

e Stalls
— Cache misses
— Branch mispredictions
— Other execution pipeline stalls

@ Stall time and computation overlap

Time = TComputation+TMemory+TBranch+TResource'T0verIap



Setup and Methodology

[VLDB99]

Range Selection Equijoin
(sequential, indexed) (sequential)
select avg (a3) select avg (a3)
from R from R, S
where a2 > Lo and a2 < Hi where R.a2 = S.al

Four commercial DBMSs: A, B, C, D

6400 PIl Xeon/MT running Windows NT 4
Used PIl counters

Correctness: Measured & computed CPI



Two very useful breakdowns
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processor stalled >50% of time
most stalls: L1]l and L2D



Adapted formula
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o CaChe Misses today

32KB L1-1 & 32 KB L1-D
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More scans = Increased page reuse



[SIGMOD16]

Breaking down clock cycles
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Where do L1l stalls come from?
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Code outside storage mgr = high L1l misses



Analyzing performance and energy

 Measuring energy efficiency



ARM server-grade processor pavons
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OLTP on ARM: performance & power?



[DAMON16]

Xeon vs. ARM
| Processor | Intel Xeon | ARM Cortex-A57

# Sockets 2 (one is active) 1
# Cores/socket 8 8
Issue width 4 4
Clock speed 2.00GHz 2.00Ghz
L1l / L1D 32KB / 32KB 32KB / 32KB
L2 256KB 256KB
L3 (shared) 20MB 8MB

RAM 256GB 16GB



Normalized throughput

[DAMON16]

ARM is a promising alternative
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Normalized

[DAMON16]

ARM achieves energy proportionality
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Normalized latency

[DAMON16]

ARM is less suitable for low latency
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Lessons learned

Macrobenchmarks show big picture
Microbenchmarks reveal details
Breakdowns correlate numbers
Sensitivity analysis highlights trends

Right methodology is essential for
understanding behavior
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