Performance and energy analysis using transactional workloads

Anastasia Ailamaki

EPFL and RAW Labs SA

students: Danica Porobic, Utku Sirin, and Pinar Tozun

Online Transaction Processing

\$20B+ industry

Characteristics:

- Has many concurrent requests
- Touch small part of whole data
- Need high & predictable performance

Primary application for databases

Hardware OLTP runs on

Hardware keeps providing new forms of parallelism How's the utilization?

Utilizing modern processors

Processor stalled most of the time

Scaling up OLTP on multisockets

Multisocket servers severely under-utilized

Why care about power?

Energy efficiency as important as performance

• Why is my system under-utilizing hardware?

Why isn't my system faster on new hardware?

Are new processors more energy-efficient?

Analyzing performance and energy

• Macrobenchmarks or Microbenchmarks?

Execution time breakdowns

Measuring energy efficiency

Analyzing performance and energy

Macrobenchmarks or Microbenchmarks?

Execution time breakdowns

Measuring energy efficiency

Utilization (microarchitecture level)

TPC-E has higher IPC

Macrobenchmark: Execution Cycles & Stalls

Over 70% of time goes to stalls Instruction stalls are the main problem

[SIGMOD16]

Even in-memory systems stall > 60% time

Microbenchmarks for what-if analysis

Lower data locality → low IPC for some systems

OLTP on hardware islands

How measure impact?

Partition sensitive microbenchmark

- Single site version
 - probe/update N rows from the local site

- Multisite version
 - probe/update 1 row from the local site
 - probe/update N-1 rows uniformly from any site
 - sites may reside on the same instance

OLTP deployment configuration's

Shared-everything

Island shared-nothing

Shared-nothing

Multisite transactions: read only

More instances -> faster performance degradation

Multisite transactions: updates

Update distributed transactions are more expensive

Analyzing performance and energy

Macrobenchmarks or Microbenchmarks?

Execution time breakdowns

Measuring energy efficiency

My first toy: PII Xeon

[VLDB99]

+Branch prediction, non-blocking caches, out-of-order

Where Does Time Go?

- Computation
- Stalls
 - Cache misses
 - Branch mispredictions
 - Other execution pipeline stalls

Stall time and computation overlap

Time =
$$T_{Computation} + T_{Memory} + T_{Branch} + T_{Resource} - T_{Overlap}$$

Setup and Methodology

[VLDB99]

```
Range Selection Equijoin
(sequential, indexed) (sequential)

select avg (a3) select avg (a3)

from R from R, 5

where a2 > Lo and a2 < Hi where R.a2 = 5.a1
```

- Four commercial DBMSs: A, B, C, D
- 6400 PII Xeon/MT running Windows NT 4
- Used PII counters
- Correctness: Measured & computed CPI

Two very useful breakdowns

[VLDB99]

processor stalled >50% of time most stalls: L1I and L2D

Adapted formula

[SIGMOD16]

Sun Niagara T2

L1-I misses dominate TPC-E has lower data miss ratio

TPC-E's lower miss ratio

More scans → Increased page reuse

Breaking down clock cycles

L1I or LLC D stalls dominate

Where do L1I stalls come from?

Code outside storage mgr → high L1I misses

Analyzing performance and energy

Macrobenchmarks or Microbenchmarks?

Execution time breakdowns

Measuring energy efficiency

ARM server-grade processor

[DAMON16]

OLTP on ARM: performance & power?

Xeon vs. ARM

Processor	Intel Xeon	ARM Cortex-A57
# Sockets	2 (one is active)	1
# Cores/socket	8	8
Issue width	4	4
Clock speed	2.00GHz	2.00Ghz
L1I / L1D	32KB / 32KB	32KB / 32KB
L2	256KB	256KB
L3 (shared)	20MB	8MB
RAM	256GB	16GB

ARM is a promising alternative

ARM achieves energy proportionality

ARM is less suitable for low latency

Lessons learned

- Macrobenchmarks show big picture
- Microbenchmarks reveal details
- Breakdowns correlate numbers
- Sensitivity analysis highlights trends
- Right methodology is essential for understanding behavior

References

[DAMON16] U. Sirin, R. Appuswamy, and A. Ailamaki: OLTP on a server-grade ARM.

[EDBT13] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki: From A to E: Analyzing TPC's OLTP Benchmarks – The obsolete, the ubiquitous, the unexplored.

[PVLDB12] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki: OLTP on Hardware Islands.

[SIGMOD16] U. Sirin, P. Tözün, D. Porobic, and A. Ailamaki: Micro-architectural Analysis of In-memory OLTP

[VLDB99] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood: DBMSs On A Modern Processor: Where Does Time Go?