Benchmarking Spark ML using
BigBench

Sweta Singh
singhswe@us.ibm.com
TPCTC 2016

Motivation

Study the performance of Machine Learning
use cases on large data warehouses in
context of assessing
— Alternate approaches to connect from
data warehouse to analytics engine
— Different machine learning
frameworks

Data preparation and Modeling are the most
time consuming phases in a ML cycle

CRISP-DM image: By Kenneth Jensen - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=24930610

2

Business
Understanding

Preparatlon
Deployment %

Data

CRISP-DM

D> Data
S = Understanding

Data

Modellng

High Speed Data Connectors for Spark

Highly optimized and parallel data ([dupyter sover_|
transfer between dashDB and Spark Spark | Komels Hoad Node gyt RESL
— Colocation of Spark executors and e
DB2 data nodes NS
_Mastar

— Optimized exchange of data

Connectors between analytics engine and
database can speed up
— ETL during data preparation phase
— Reading from data store during the
Model Creation phase
= Assessing alternate models
= Tuning the model parameters — e - =
= During model execution Partions —) Raicre Partions ¢
— Writing back the scoring results to the

database dashDB Spark integration Layout

ll

Why BigBench?

Requirements for benchmarking high speed data connectors
— Representative of a realistic use case for performing ML on data warehouse
— Ability to scale to large data volumes
— Supports read and write to data source

— Invoke Machine Learning algorithms via SQL interface (Stored Procedure) or via
Spark jobs (using customized RDD to connect to data source)

— Ability to execute multiple streams to test scalability and resource management in an
integrated solution where Spark and database co-exist on the same cluster

— Compare efficiency and accuracy of Spark MLIlib versus IBM ML algorithms

BigBench met most of our requirements

Collaborative Filtering using Matrix Factorization (MF)

Known for unique challenges
— Data Sparsity: Very few customers rate items
— Scalability: Computational complexity in filling the sparse user item association
matrix grows quickly on large data sets

563,518 Ttems i

Users
Factor [U]

Ratings [R]

= Items Factor [M] X

3,130,656 Users

BigBench Sparsity level = 0.00025%

Alternating Least Squares in
Spark MLIib

6

Step 1: Initialize with random factor

Step 2: Hold the item factor constant s———)
and find the best value for user

Step 3: Hold the user factor constant
and find the best value for item

Repeat Step 2 & Step 3 for
convergence

Reference: Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems

Stage 15

groupByKey

mapValues

groupByKey
>

Stage 16

groupByKey

l /‘:M;H_gf -

\ join

P
o<

mapValues

o<
¢

i

ALS DAG Visualization

Why include Matrix Factorization in BigBench?

= Unique Performance characteristics

= Trade-off between efficiency and accuracy. Accuracy improves with high number of latent
factors with a corresponding drop in performance

= Facilitates creation of real time analytics scenario: Saved Matrix Factorization model can
be used to predict ratings on trickling web_clickstreams data during the workload run

= Good test bench for comparing implementation and optimizations of different ML
frameworks

QO05: Through the SPSS Lens

= Predict if a visitor will be interested in a given item category, based on demographics and
existing users online activities (interest in items of different categories)

= Label is 1 if “Clicks in Specified category” > Average Clicks in that category

= Modeler selection & Accuracy varies depending on the specified item category
— If CLICKS _IN column of the item category is in the input vector, models are able to
predict the outcome with 100% accuracy. Models selected are Logistic Regression &
models of decision tree family
— If CLICKS_IN column of the item category is NOT in the input vector, more complex
models are chosen and accuracy < 100%

Scenario #1:

= Feature Vector
— [CLICKS _IN_1, CLICKS IN_2, CLICKS IN_ 3, CLICKS IN 4, CLICKS IN_5,
CLICKS IN_6, CLICKS IN_7, COLLEGE_EDUCATION, MALE]

= Specified category = 3

Build Time Max Max Profit ; Overall No. Fields Area Under
Er Mede! (mins) Profit ‘ Occurs in (%) ‘ ey Accuracy (%) Used Curve
‘?QV C51 15 1,564,925.0 9 3333 100.0 1 1.0
: [{ Logistic regression 1 15 1,564,925.0 9 3.333 100.0 9 1.0
== ———————
: w C&R Tree 1 15 1,564,925.0 9 3333 100.0 6 1.0

E-Equation For 0
E-Equation For 1

i 0.07511* COLLEGE_EDUCATION +

. 0.0001811* CLICKS_IN_1+
++ CLICKS_IN_3 <= 756 [Mode: 0] = 0 SioggqogﬁgK'SC:ﬂcgs-'N-z *
-0.001071 * CLICKS_IN_5 +
0.0003695 * CLICKS_IN_6 +
Tree Depth =] 0.00254 * CLICKS_IN_7 +

+-8715.9

9 Image: IBM SPSS Modeler Output

Scenario #2:

» Feature Vector
— [CLICKS _IN_1, CLICKS IN_2, CLICKS IN_ 3, CLICKS IN 4, CLICKS IN_5,
CLICKS_IN_6, CLICKS IN_7, COLLEGE_EDUCATION, MALE]

= Specified category = 9

sort by (1:]] [>< Detete unusea Models | view:
Build Max Max Profit) Overall No. Fields | Area Under
=|[=R SRR Time Profit Occurs in (36) | SHTOP 30%} |) ciracy (%) |Used Curve
i . cs51 4 579,106.558 8 2896 91.156 9 0.903

i H Meural Met 1 6 540,565 7 3.018 90.885 =] 0.927
| i Ly Logistic regression 1 4 543,065 7 3.022 90.901 o 0.928

E-Equation For 0
= Equatlon For1
0.01647 * CLICKS_IN_1 +

Bl CLICKS_IN_1 == 233 [Mode: 0]
. i~ CLICKS_IN_5 <=226 [Mode: 0] => 0 0.01627* CLICKS_IN_2 +
El- CLICKS_IN_5 = 226 [Mode: 0] : 0.01658 * CLICKS_IN_3 +
i CLICKS_IN_6 <=218 [Mode: 0] => 0O © 0.01667 * CLICKS_IN_4 +
: El- CLICKS_IN_6 =218 [Mode: 0] *
El- CLICKS_IN_1 = 233 [Mode: 010 = h 2 gglgi; gt:gig_:::_:".
E- CLICKS_IN_5 <= 253 [Mode: 0] T D — 5 e (), * _IN_6 +
| E- CLICKS_IN_6 <= 225 [Mode: 0] ree ept *
i B~ CLICKS_IN_6 =225 [Moge:eol p 0.01629 * CLICKS_IN_7 +
Bl- CLICKS_IN_5 = 253 [Mode: 1] -0.003007 * [COLLEGE_EDUCATION=0] +
El- CLICKS_IN_1 <= 267 [Mode: 1] * -
Bl CLICKS_IN_1 = 267 [Moge:e1 1 0.003655 * [MALE=0] +

10 Image: IBM SPSS Modeler Output +-25.8

Scenario #3:

» Feature Vector

— [CLICKS_IN_1, CLICKS_IN_2, CLICKSIN-3, CLICKS_IN_4, CLICKS_IN_5,

CLICKS_IN_6, CLICKS_IN_7, COLLEGE_EDUCATION, MALE]

= Specified category = 3

Build Time | Max Max Profit |, . Overall No. Area
et AEEE (mins) Profit Occursin |FMTOP 3| sccuracy |Fields | Under
|j| | Iz) Logistic regression... 11 706,920.0 7 2282 04.145 s 0967
|j| | y Neural Net 1 11 £99.860.0 7 3279 04.088 s 0966
|i| IQ CHAID 1 11 641240571 o 3266 03722 6 096

CLICKS_IN_2 ==786 [Mode: 0] => 0
- CLICKS_IN_2 =786 and CLICKS_IN_2 <= 818 [Mode

- CLICKS_IN_2 > 873 and CLICKS_IN_2 <= 901 [Mode

- CLICKS_IN_2 = 930 and CLICKS_IN_2 <= 965 [Mode:

- s aa

Image: IBM SPSS Modeler Output

~a o

11

- CLICKS_IN_2 = 965 and CLICKS IN _2<==1,013 [Mode: 0]

0]
- CLICKS_IN_2 =818 and CLICKS_IN_2 == 846 [Mode:
- CLICKS_IN_2 = 846 and CLICKS_IN_2 == 873 [Mode:
0]
- CLICKS_IN_2 =901 and CLICKS_IN_2 == 930 [Mode:

0]
0]

0]
0]

Tree Depth = 8

Key Learning

= Not including the deterministic clicks in the input feature vector will exercise and stress the
machine learning algorithms in a more realistic way. This clearly reflects in the tree depth

= Another benefit is the ability to introduce more complex algorithms such as Neural Networks
to the BigBench ML mix

Tuning ML Pipeline

= Model Evaluation phase involves assessing alternate models or tuning the optimization
parameters of an algorithm. Tuning is assessed by accuracy on test data sets using cross
validation

= Example: Tuning regularization parameter for Logistic Model/ALS, Tuning “rank” for ALS

= Tuning can have interesting side effects on performance

!

RMSE

0.95
0.94
0.93
0.92
091

0.9
0.89
0.88
0.87
0.86
0.85

10

—RMSE

20

40
Rank

Elapsed time (minutes)

80

Elapsed time (minutes)

Test Environment
BigBench Scale Factor = 1TB
dashDB Local cluster, CentOS7.0-64 and Spark
1.6.2
4 nodes with the following configuration:
24 cores (2.6GHz Intel Xeon-Haswell)
512 GB memory
10000 Mbps full duplex N/W card

Conclusion & Next Steps

= K-Means use case in BigBench has been very effective in proving the benefits of a high speed
connector between data warehouse and Spark

= OQur recommendations
— Broaden the scope of BigBench to more Machine Learning algorithms since performance
characteristics of ML algorithms vary
= Achievable via addition of new use case like Recommender and tweaking existing
scenarios like Q05

— Simulate more ML usecases
= Real time analytics for Collaborative Filtering
= Tuning Machine Learning pipeline

= Continued work
— Investigate ways to incorporate data transformations in the analytic engine layer in BigBench
— Study the performance characteristics of other ML algorithms on BigBench use case — Trees
and Neural Network

Thank you!

Sweta Singh
singhSwe@us.ibm.com

