
R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 77–92, 2014.
© Springer International Publishing Switzerland 2014

Architecture and Performance Characteristics
of a PostgreSQL Implementation of the TPC-E

and TPC-V Workloads

Andrew Bond1, Doug Johnson2, Greg Kopczynski3, and H. Reza Taheri3

1 Red Hat, Inc.
2 InfoSizing, Inc.
3 VMware, Inc.

abond@redhat.com, doug@sizing.com, {gregwk,rtaheri}@vmware.com

Abstract. The TPC has been developing a publicly available, end-to-end ben-
chmarking kit to run the new TPC-V benchmark, with the goal of measuring the
performance of databases subjected to the variability and elasticity of load de-
mands that are common in cloud environments. This kit is being developed
completely from scratch in Java and C++ with PostgreSQL as the target data-
base. Since the TPC-V workload is based on the mature TPC-E benchmark, the
kit initially implements the TPC-E schema and transactions. In this paper, we
will report on the status of the kit, describe the architectural details, and provide
results from prototyping experiments at performance levels that are representa-
tive of enterprise-class databases. We are not aware of other PostgreSQL ben-
chmarking results running at the levels we will describe in the paper. We will
list the optimizations that were made to PostgreSQL parameters, to hard-
ware/operating system/file system settings, and to the benchmarking code to
maximize the performance of PostgreSQL, and saturate a large, 4-socket server.

Keywords: Database performance, virtualization, PostgreSQL, cloud
computing.

1 Introduction

1.1 TPC-V Benchmark

In this paper, we will describe the architecture of the TPC-V benchmark, give a
progress report on its implementation, and present the performance results collected so
far. TPC-V measures the performance of a server running virtualized databases. It is
similar to previous virtualization benchmarks in that it has many VMs running differ-
ent workloads. It is also similar to previous TPC benchmarks in that it uses the schema
and transactions of the TPC-E benchmark. But TPC-V is unique since unlike previous
virtualization benchmarks, it has a database-centric workload, and models many prop-
erties of cloud servers, such as multiple VMs running at different load demand levels,
and large fluctuations in the load level of each VM. Unlike previous TPC benchmarks,
TPC-V will have a publicly-available, end-to-end benchmarking kit.

78 A. Bond et al.

We will start with a short introduction to virtualization, give a brief background on
the properties and the development process of the benchmark, then describe the archi-
tecture of the kit, and conclude with some of the performance results obtained so far.

1.2 Virtualization

Virtualization on the Intel x86 architecture was pioneered in late 1990s [2, 3, 4], and
has grown to become a mainstream technology used in enterprise datacenters. Today,
virtualization is the fundamental technology that enables cloud computing. So, there
is strong demand for a database-centric virtualization performance benchmark with
cloud computing characteristics. In response to this demand, a TPC subcommittee
was formed in 2010 to develop a benchmark with the following properties:

1. Models a database-centric workload
2. Exercises the virtualization layer
3. Has a moderate number of VMs (as opposed to modeling a pure consolidation

scenario with a large number of VMs)
4. Emulates a mix of Transaction Processing and Decision Support workloads
5. A heterogeneous mix of low load volume and high load volume VMs
6. Has a healthy storage and networking I/O content
7. Models the elastic load-level variations of cloud VMs

The complete description of the benchmark specification, the details of the load
variation, performance metrics, and other properties of the benchmark are detailed in
[1, 5]. In this paper, we will describe the new developments and prototyping results.

2 Other Virtualization Benchmarks

2.1 Consolidation Benchmarks

The early virtualization benchmarks were representative of the consolidation envi-
ronment where many low volume workloads that had been running on individual
servers would be consolidated onto a single server using virtualization. The earliest
example is VMmark [14] which is a de facto standard with hundreds of publication on
several succeeding versions of the benchmark. An industry standard follow-on is
SPECvirt_sc2010 [7] which incorporates modified versions of three SPEC workloads
(SPECweb2005_Support, SPECjAppServer2004 and SPECmail2008) and drives
them simultaneously to emulate virtualized server consolidation environments, much
like VMmark 1.0 did. To date, there have been 33 publications on SPECvirt_sc2010.
The SPECvirt_sc2013 [9] benchmark was released in 2013 with 2 publications so far.

2.2 TPC-VMS

In 2012, the TPC released the TPC-VMS [7] (TPC Virtual Measurement Single Sys-
tem) benchmark, which emulates a simple consolidation scenario of 3 identical data-
bases. The 4 workloads used in TPC-VMS are the TPC-C [10], TPC-E [11], TPC-H
[12], and TPC-DS [13] benchmarks. By leveraging existing TPC benchmarks,

 Architecture and Performance characteristics of a PostgreSQL implementation 79

TPC-VMS does not require development of a new kit. It is expected that the ease of
benchmarking afforded by use of existing kits will result in vendors publishing TPC-
VMS results while the more feature-rich TPC-V benchmark is being developed.

3 TPC-V Architecture

3.1 TPC-E as a Starting Point

We decided early on to base the TPC-V workload on the existing TPC-E [11] bench-
mark. The long pole in benchmark development is often the development of the
schema and the transactions, as well as writing a crisp, detailed specification that lays
out the detailed documentation required for audit and publication procedures. By
borrowing the Data Definition Language (DDL) and Data Manipulation Language
(DML) of TPC-E, we were able to start the prototyping of TPC-V much earlier than is
typical of TPC benchmarks. And by using the TPC-E functional specification docu-
ment as the starting point, we only had to focus on what is new in TPC-V. TPC-V is
fundamentally a different benchmark from TPC-E with different characteristics, yet
gained years of development time by using TPC-E as the foundation.

3.1.1 Differences with TPC-E
Like TPC-E, TPC-V has 33 tables and 12 transactions, and very similar DDL and
DML. However, there are differences in table cardinalities and the transaction mix,
mostly to make the benchmarks non-comparable and for ease of benchmarking [1].

3.1.2 VGen
EGen, a publicly available program, generates the raw data that is used to populate a
TPC-E database. It is also linked with the benchmarking kit to produce the run time
transaction parameters. This ensures that query arguments match what has been loaded
into the database. It also governs the generation of many run-time parameters, such as
the transaction mix frequencies and random numbers. Besides making it easier to de-
velop benchmarking kits, this guarantees adherence to the benchmark specification

TPC-V follows this model by using a VGen module that is based on EGen,
modified to conform to the TPC-V specification. As will be detailed in section 3, the
TPC-V benchmarking kit must produce different volumes of load to different VMs
(section 3.2), and vary this load at different phases of the benchmark run (section 3.4).
We realized early on that driving the load to different VMs independently and at-
tempting to keep them in sync at run time would be nearly impossible. Instead, all of
these relationships are maintained by VGen. It distributes transactions over VMs fol-
lowing the numerical quantities specified in a configuration file, and also varies the
load based on the elasticity parameters in that file. Using a deck of cards method,
VGen ensures that the load ratios among the many VMs are maintained at the values
specified in the configuration file. If one VM is running slower than expected, the load
to other VMs is automatically reduced such that the specified ratios are maintained.

80 A. Bond et al.

Fig. 2. A TPC-V server with 4 Groups and 12 VMs

Group A, Set 1 VM1 A1 VM2 VM3 A1

Group B, Set 1 VM1 B1 VM2 B1 VM3 B1

Group C, Set 1 VM1 C1 VM2 C1 VM3 C1

Group D, Set 1 VM1 D1 VM2 D1 VM3 D1

Fig. 1. Components of a TPC-V Set

3.2 Heterogeneous Load

The basic building block of TPC-V is a Set of 3 VMs. Tier A VM1 receives transac-
tions from the driver system and runs the database client code, similar to the Tier A of
a TPC-E benchmark configuration [11]. VM1 directs the two Decision Support trans-
actions to the DSS VM2, and the other transactions to the OLTP VM3. Each VM has
an independent database instance that resides on that VM’s virtual disk drives.

3.3 Multiple Sets and Groups

Fig. 2 represents the simplest TPC-V configuration of a server with 4 Groups, each
with one Set of 3 VMs for a total of 12 VMs. To emulate the heterogeneous nature of
VMs in a cloud environ-
ment, each Group handles
a different proportion of
the overall load. Averaged
over the full measurement
interval, Groups A, B, C,
and D receive
10%, 20%, 30%, and 40%
of the overall load, respec-
tively. The sizes of the
independent databases in
the 4 VMs (represented by
table cardinalities) follow
the same proportions. The
4 Groups are driven inde-
pendently; the driver mod-
ule is required to ensure
that the load proportions
remain as specified.

Tier B VM2,
DSS queries

Tier B VM3,
OLTP transactions

Tier A VM1, app logic code

Stored procedure calls

Transactions
arriving from the

driver system

Virtual disks Virtual disks

 Architecture and Performance characteristics of a PostgreSQL implementation 81

Fig. 3. Overlapping ranges for valid numbers of Sets
per Group

Table 1. Valid numbers of Sets for various
throughputs

From tpsV To tpsV
No. of
Sets

100 1600 1

400 25,600 2

6,300 409,500 3

102,400 6,553,600 4

1,638,400 104,857,600 5

26,214,000 Infinity 6

The number of Sets per
Group in TPC-V grows as the
overall throughput grows. So,
e.g., at a throughput level of
4,000 tpsV, the sponsor is re-
quired to configure 2 Sets per
Group. For Group A, each of
the two Sets supplies 5% of the
overall throughput; a similar
calculus applies to the other
three Groups. The growth in the
number of Sets per Group is
sub-linear: a 10X throughput
growth might result in a 2X
increase in the number of Sets per Group. This is characteristic of database servers in
the cloud.

Rather than requiring an exact number of Sets for every throughput value, we al-
low two possible Set counts for most throughput ranges, as shown in Table 1 and Fig.
3. This was done for ease of benchmarking. Without this allowance, if a test sponsor
were targeting a throughput that is near the value at which the number of Sets per

Group changes, a slight change up or
down in the eventual throughput would
necessitate rebuilding the testing infra-
structure with a different number of
VMs.

So, for example, 25,600 tpsV is the
crossing point from 2 to 3 Sets per
group. If the sponsor expects to achieve
25,600 tpsV, builds a 3-Sets-per-Group
configuration with 36 VMs and 24 data-
bases, but reaches only 24,000 tpsV,
there is no need to reconfigure platform
with fewer VMs since the specification
allows 3 Sets per Group down to 6,300

tpsV. The sponsor only needs to repopulate the databases, scaled to the correct
throughput.

3.4 Elasticity

A feature of TPC-V is that the load of each Set rises and falls during the measurement
interval. This represents the elastic nature of workloads present in cloud data centers,
and the resource allocation policies required to handle such elasticity. The overall
load presented to the System Under Test remains constant during the Measurement
Interval, but the contribution from each Set varies by as much as a factor of 7X every
12 minutes, e.g., the rise of the contribution of Group A from 5% to 35% in Elasticity

82 A. Bond et al.

Table 2. Phase-to-phase variation of load received by
individual Groups

Elasticity
Phase

Group
A

Group
B

Group
C

Group
D

1 10% 20% 30% 40%

2 5% 10% 25% 60%

3 10% 5% 20% 65%

4 5% 10% 5% 80%

5 10% 5% 30% 55%

6 5% 35% 20% 40%

7 35% 25% 15% 25%

8 5% 65% 20% 10%

9 10% 15% 70% 5%

10 5% 10% 65% 20%

Average 10% 20% 30% 40%

Phase 7. When the contribu-
tion of a Group changes, the
contribution of all individual
Sets in that Group change to
the same degree. Table 2
and Fig. 4 show how much
each Set contributes to the
overall throughput in each
12-minute Elasticity Phase.

4 Reference Kit

 Benchmarking kits for TPC
benchmarks have always
been provided by test spon-
sors, typically by DBMS
vendors who tailor their kits
to their own databases. Al-
though we would have liked

a DBMS vendor to provide a benchmarking kit for TPC-V, due to lack of such a
commitment, the subcommittee accepted the challenge of developing its own kit. This
turned out to be a positive development as it will result in the TPC releasing its first
publicly available, complete end-to-end benchmarking kit which can be used by sys-
tem vendors, researchers, and end users alike. The details of this decision making,
comparison with other benchmarking kits, and a block diagram of the kit components
can be found in [1]. Fig. 5 shows how the various elements of the TPC-V reference
kit map to the components of the tested configurations.

Fig. 4. Distribution of overall load over the 4 Groups versus time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

D
iv

is
io

n
of

 o
ve

ra
ll

th
ro

ug
hp

ut
 o

ve
r

th
e

4
G

ro
up

s
of

 T
P

C
-V

Group A Group B Group C Group D

Elasticity phase

 Architecture and Performance characteristics of a PostgreSQL implementation 83

Fig. 5. Single-set Reference Driver Components Representation

4.1 V-Gen Functionality Development

The primary focus in implementing V-Gen functionality has been in adding multi-
group, multi-set, multi-phase support. And while multi-group and multi-set and multi-
phase have been described previously, the multi-iteration support has been added in
order to be able to run as many ten-phase intervals as desired in a single test. The
tester will then be able to choose any sequential ten phases in the multi-interval test
run as the measurement set. The ability to choose such a measurement set is being
added to a reporter process, which is also new to the kit. And lastly, the runtime result
polling has been modified to provide group mix data that displays performance on a
per-group basis in addition to the previous per-transaction basis.

4.2 Card Deck for Multi-group, Multi-set and Multi-phase Support

 As described previously, multi-group and multi-set support has been implemented in
the reference driver by having every CE process connect to each vconnector process
in every group and every set. In doing so, we are able to use a card deck to assure the
proper mix of transactions across these groups and sets. This deck is created for each
CE load generating thread and is shuffled at the beginning of the run. Each time the
CE starts a new request, it takes a card from this deck to determine the group and set
ID of the vconnector process to whom it should direct the request, and once the bot-
tom of the deck is reached, it simply starts back at the top.

Likewise, different phases have different transaction mixes, so we have a separate
card deck for each of the ten phases that contains the proper mix of transactions for

84 A. Bond et al.

that phase. At a phase change, the deck from which the cards are pulled is also
changed to the corresponding deck with the correct request mix.

4.3 Result Reporting

A reporter class is under development to help with processing the mix logs. It is cur-
rently capable of combining CE mix logs from multiple CE processes into a merged
log that can be used to extract the needed data for a benchmark report. One such piece
of information that it currently offers is that after combining the CE mix logs, it
creates a CSV file with the total number of transactions that occurred in each 30-
second interval from the start of the ramp-up-phase to the end of the ramp-down
phase of the full benchmark run. This code should require minimal modification to
provide similar and more granular information on transaction totals over time based
on transaction type, group, set, iteration, phase, or even per-client-thread transaction
information.

Of course, to be able to accurately combine CE mix log files, you have to have in-
formation about the runtime configuration used to generate those logs. So at the end
of a benchmark run, the reporter also creates a runtime.properties file that contains the
necessary information. This file is also passed to the reporter when it is invoked.

4.4 Runtime Polling

The addition of groups and sets to TPC-V resulted in the need for group- and
set-specific polling information. So in addition to the previous per-transaction-type

--
 Txn Rate Resp Time Txn Pct Pass Count Fail Count
TRADE_ORDER : 8.36 0.0077 11.33 1487 18
TRADE_RESULT : 0.00 0 0.00 0 0
TRADE_LOOKUP : 6.60 0.4995 8.95 1188 0
TRADE_UPDATE : 1.66 0.6165 2.25 299 0
TRADE_STATUS : 15.94 0.0074 21.60 2869 0
CUSTOMER_POSITION: 10.67 0.0076 14.46 1920 0
BROKER_VOLUME : 4.09 0.0402 5.54 736 0
SECURITY_DETAIL : 11.68 0.0067 15.83 2102 0
MARKET_FEED : 0.00 0 0.00 0 0
MARKET_WATCH : 14.78 0.0104 20.04 2661 0
DATA_MAINTENANCE : 0.00 0 0.00 0 0
TRADE_CLEANUP : 0.00 0 0.00 0 0
--

--
 Group 1 Group 2 Group 3 Group 4
Txn Total: 664 1329 3316 7971
Txn Pct : 5.00 10.01 24.97 60.02
Resp Time: 0.0957 0.0771 0.0705 0.0624
Fail Cnt : 2 2 3 11
--

Iteration 2 Phase 2 Aggregate Txn Rate: 73.78

Fig. 6. Sample polling output

 Architecture and Performance characteristics of a PostgreSQL implementation 85

polling information, per-group polling information has been added. So now a sample
polling output might look like the output in Fig. 6. This additional information lets
you know whether you are meeting the transaction mix requirements for each group,
as well as the average response times and failure counts for each vconnector process.

4.5 MEE Development

As already noted, the MEE currently implements the Market Feed and Trade Result
transactions as required for TPC-E. However, the nature of the MEE is such that it
places constraints on implementation design for TPC-V. For example, we cannot
design the MEE such that a single MEE process connects to all groups and sets as we
do with the CE. This is because when transactions from the CE that trigger MEE
transactions occur, they do not identify themselves by their group and set. Thus when
the MEE generates a transaction in response to the CE trigger, it would have no way
of knowing which vconnector process should be the recipient of this transaction.

Due to this design constraint, we need a MEE paired specifically with each vcon-
nector process so that any CE request that triggers and MEE transaction will always
be sent to the correct recipient. At this point, this could mean a separate MEE process
is started for each vconnector process, but ideally we hope to be able to have one
MEE process handle requests for all four groups in each set using separate transaction
handling threads and requiring only unique connections for each of these four MEE
threads. This is not a requirement, though having fewer processes for the prime client
to coordinate with is certainly desirable.

4.6 TPC-E Functionality

Since TPC-E is the starting point of this benchmark, and since it is a simpler, single-
system benchmark, we used it as the design center of the first implementation of the
reference kit. Although a complete, compliant TPC-E kit is not a goal of this project,
the early prototype has been used to provide a glimpse of PostgreSQL running the
TPC-E workload. Although we have been experimenting with multiple Sets and VMs
following the TPC-V architecture, the workload has been mostly based on TPC-E.

5 Current Status of the Benchmark and the Reference Kit

The TPC-V reference benchmarking kit is nearly complete as of this writing. Below
are the functionalities that are completed:

- A Driver module that generates TPC-E or TPC-V transactions, and distributes
them over any number of Set and Groups of VMs in case of TPC-V (see sec-
tion 3). It also implements the TPC-V elasticity feature

- A VGen module based on the TPC-V schema, transaction mix, etc.
- The Customer Emulator module
- The Market Exchange Emulator module for TPC-E transactions
- The vconnector module that performs all the database accesses

86 A. Bond et al.

- The DDL and DML scripts for PostgreSQL 9.2
- Linux shell scripts to launch all these programs, collect data and statistics, and

produce results metrics

The functionalities that remain to be completed are:

- Modifying the MEE, stored procedures, and DML calls such that the Trade-
Result and Market-Feed transactions conform to the TPC-V specification

- The Data-maintenance transaction (a non-critical component)
- Extensive prototyping results for verification and testing of the reference kit
- Porting of the reference kit to multiple environments

6 Results from Prototyping Experiments

6.1 Introduction

Most of the results presented here were obtained before the MEE functionality was
added to the kit. So they are not an accurate representation of eventual TPC-V per-
formance. However, we expect the two missing transactions to have similar profiles
to the 8 transactions implemented. The current functionality is sufficient to study how
efficiently PostgreSQL executes the TPC-E/TPC-V queries, as well as an analysis of
whether the hypervisor used in the study was able to handle the variability and elastic-
ity of the load that TPC-V places on the system. For the remainder of this section, we
will refer to transactions per second or tps to denote the total number of transactions
processed. This should not be confused with the tpsV metric, which only counts the
Trade-Result transactions, which make up only a 10% fraction of the total transaction
volume. Trade-Result is issued by the MEE module, which was not developed in time
for our initial measurements. Hence we count all 8 transactions, and report that as tps.

6.2 Benchmarking Configuration

The system under test was a 4-socket HP ProLiant DL580 G7 server with 2.40GHz
Intel Xeon E7-4870 (WestmereEX) CPUs. To put this in perspective, HP has pub-
lished a TPC-E result of 2,454 tpsE1 on this system. The highest TPC-E result is
5,457 tpsE on an IBM System X3850 X5 server2. So the server we are using for pro-
totyping is a large, high-end server. The storage was two EMC VNX5700 disk arrays.
38 EFDs (EMC term for SSDs) in a RAID5 configurations were used for the DSS
VMs, which have the lion’s share of disk I/O. 88 spinning disk drives in a RAID 1
configuration were used for the OLTP VMs, which have lower I/O requirements. The
software stack was vSphere 5.1, RHEL 6.1, PostgreSQL 9.2.2 and unixODBC 2.2.14.

The benchmark was configured with 1 Set for each of the 4 Groups, for a total of
12 VMs. The driver system was the 13th VMs on the system. The database size is
expressed in Load Units, each LU representing 1,000 rows in the Customers table.
The cardinalities of the other 32 tables are either fixed, or are proportional to the
number of Customers.

1 As of 6/21/2013. Complete details available at http://www.tpc.org/4046
2 As of 6/21/2013. Complete details available at http://www.tpc.org/4063

 Architecture and Performance characteristics of a PostgreSQL implementation 87

Table 3. Configuration info for VMs

 VM
A1

VM
A2

VM
A3

VM
B1

VM
B2

VM
B3

VM
C1

VM
C2

VM
C3

VM
D1

VM
D2

VM
D3

DB size in
LUs

- 50 50 - 100 100 - 150 150 - 200 200

DB size in
GB

- 336 328 - 670 654 - 1004 980 - 1308 1328

Memory in
GB

2 88 39 2 146 54 2 220 68 2 278 78

vCPUs 3 4 12 5 8 24 6 12 30 8 16 40

Table 3 shows various configuration parameters for the 12 VMs. VM1s have very

little memory usage, and their CPU usage is about 1/8th of the total CPU load. VM2s
have modest processing needs, but we had to allocate most of the memory to them to
cache more of the database and reduce the I/O load. VM3s didn’t need as much mem-
ory since their I/O was already low, but were allocated about 60% of the total
processing power. It is worth noting that, much like real cloud database VMs, al-
though the CPU resources were overcommitted (more virtual CPUs in the VMs than
physical CPUs on the server), the total memory allocated to the 12 VMs is 979GB, on
a server with 1TB of memory. This is common for database VMs since overcommit-
ting memory can result in paging, with disastrous results for database performance.

Virtual CPUs and Elasticity
The number of virtual CPUs, however, totals 168, well above the 80 logical CPUs (40
cores X 2 hyperthreads per core) on the server. This overcommitting is common in
cloud environments since the number of virtual CPUs configured into a VM should be
adequate for its peak demand. But not all VMs peak at the same time. So as long as
the total load does not exceed 80 CPUs’ worth, we can overcommit the virtual CPUs.

6.3 1-Phase and 10-Phase Runs

As mentioned in section 3.4, TPC-V requires the load received by each Group to vary
over ten 12-minute elasticity phases. As we will see in section 6.4, this posed a chal-
lenge in our environment due to storage bandwidth limitations. So we ran some expe-
riments with a single phase (i.e., constant proportioning of load across Sets for the
duration of the run) to study the performance characteristics of the database, the oper-
ating, the hypervisor, and the hardware. We also ran experiments with 10 phases to
specifically study the ability of the system under test to respond to load elasticity, and
to determine whether the TPC-V benchmarking kit is able to deterministically distri-
bute the load over the Sets even when some Sets are strained under the load.

In a 1-phase run with 4 Groups, the throughput was 4,191 transactions per second3.
In the CPU utilization graphs in Fig. 7, the Y axis is the total CPU utilization of each

3 As mentioned in section 6.1, this transactions per second metric should not be confused

with the tpsV metric, which would have been as much as an order of magnitude smaller.

88 A. Bond et al.

Fig. 7. CPU utilization of individual VMs for a single-phase run

Fig. 8. Total CPU usage and throughput of a single-phase run

0

200

400

600

800

1000

1200

1400

1600
1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

CP
U

 u
ti

liz
at

io
n

ou
t o

f i
nd

iv
id

ua
l V

M
s

Minutes

Per VM CPU utilization
VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

VM D3

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Th
ro

ug
hp

ut

To
ta

l C
PU

 u
sa

ge
 (o

ut
 o

f 8
,0

00
%

)

minutes

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

VM. An 8-vCPU VM would register a utilization of 800% if all 8 vCPUs were fully
utilized. All of these metrics are measured on virtual CPUs on the guest VMs.

Fig. 8 shows throughput and the sum of CPU utilizations of individual VMs. It
might appear that the system is not fully saturated, but that’s due to the artifacts of
hyperthreading when we collect statistics on the guest OS. Hypervisor and hardware
counters register between 85% and 95% utilization on the CPU cores.

 Architecture and Performance characteristics of a PostgreSQL implementation 89

6.4 Throughput versus Other Performance Metrics for 10-Phase Runs

We also ran the benchmark with the load variation depicted in Fig. 4. As Fig. 9
shows, the CPU utilizations of individual VMs varied during the 2-hour runs, as did
the overall throughput, shown in Fig. 10. However, the benchmarking kit ensured that
the contributions of each Group remained exactly as prescribed in Table 2.

In this case, the throughput dropped drastically during some phases. The reason for
this drop was the inability of the storage to cope with the changes in load. Briefly, the

Fig. 9. CPU utilizations of individual VMs for a run with 10 elasticity phases

Fig. 10. Total CPU usage and throughput for a run with 10 elasticity phases

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

CP
U

 u
ti

liz
at

io
n

ou
t o

f i
nd

iv
id

ua
l V

M
s

Minutes

Per VM CPU utilization
VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Th
ro

ug
hp

ut

CP
U

 u
sa

ge
 o

ut
 o

f a
 p

os
si

bl
e

8,
00

0%

minutes

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

90 A. Bond et al.

overall load, and hence the overall I/O requirements, remain constant over the execu-
tion time. Hence, if the storage is shared by all VMs in a striped format, the variations
in load should not have the large impact that we observed. However, our storage was
split in two groups: LUNs for Groups A and B were striped across one set of SSD
disks, and LUNs for Groups C and D on a second set of SSD drives.

When in Phase 4 the load of the Group D is at its maximum, the second storage ar-
ray was unable to satisfy the needs of that Group. One can overlay Fig. 4 and Fig. 10,
and see that whenever Group C or Group D is at or near peak contribution to the
overall throughput, performance goes down because we are unable to utilize excess
capacity left in the first storage array dedicated to Groups A and B. In other words the
benchmark is working exactly as intended: it is exposing a problem in the resource
management of the underlying platform.

6.5 Results with a Full, End-to-End Kit

As pointed out in section 6.1, most of the results reported here were from a kit that did
not have the MEE module, i.e., it was missing the important Trade-Result and Mar-
ket-Feed transactions. In the months leading to this publication, we were able to take
runs with a functional MEE, and could measure performance with the full comple-
ment of the 10 transactions (the Data-Maintenance transaction, which does not impact
performance, has not been implemented). As we had predicted, the overall perfor-
mance in terms of average milliseconds/transaction and the overall execution profile
did not change very much. The addition of the two new transactions only changed the
frequency percentages of the mix of transactions.

Early results look encouraging. We took runs with the TPC-E workload on a 16-
way VM on the server described in section 6.2. We observed a throughput of roughly
140 tpsE at 80% CPU utilization on a 16-vCPU VM. So we are at ~9.1 millise-
conds/tpsE. The published result with a commercial DBMS for this 80-way server is
2,454 tpsE, i.e. ~3.3 milliseconds/tpsE. Since our results are on a VM, there is a virtu-
alization overhead of roughly 10% to consider. Also, our database was oversized, and
our I/O rate is as much as 8 times the I/O rate of the commercial database due to
PostgreSQL not having the Clustered Index feature of the commercial database. Con-
sidering all this, and assuming we can compare 16-way and 80-way results, perfor-
mance is respectable for this early stage of prototyping.

6.6 PostgreSQL Tuning

Our current throughput level is close to 5,000 tps, summed over 4 Sets with 12 VMs.
The audited result for this system is 2,454 tpsE, which only counts Trade-Result
transactions. So running TPC-E with a commercial DBMS, it really processes 24,545
transactions per second. So we are nearly 5X off that mark. To make a direct compar-
ison, we need to run a single VM with the complete TPC-E workload, including the 2
MEE transactions. But based on the data collected so far, we can see that many tuning
opportunities exist, especially in the I/O rate. It appears that due to not having clus-
tered indexes, PostgreSQL issues nearly 4 times as many I/Os per transaction as the
TPC-E design goal. This is our primary focus area for the next phase of this project.

 Architecture and Performance characteristics of a PostgreSQL implementation 91

Table 6. Effects of increasing WAL_segments

Checkpoint metric 12
segments

5,120
segments

checkpoints_timed 0 1
checkpoints_req 15 0
buffers_checkpoint 4,437,177 956,174
buffers_clean 14,069 852,893
buffers_backend 46,297 39,297
buffers_alloc 24,831,473 23,749,499

File System Parameters
An optimization recommend in [6] is separate file systems for data and Write-Ahead
Log (WAL), because of the more strict cache flushing semantics for the log. Initially,
an ext4 file system held both log and data, mounted with noatime,nodiratime,
nobarrier,. We then created a pg-xlog ext3 file system, mounted with noatime,
nodiratime,data=writeback. The log virtual disks of all VMs were placed
on a LUN with only 4 disk drives, yet all experienced fast disk latencies. The result
was a 6.5% increase in the throughput of the 4-Group, single-phase runs to 4,769 tps.

Checkpointing
Two parameters manage the checkpoint frequency of PostgreSQL. A new checkpoint
is initiated either when a checkpoint has not occurred in checkpoint_timeout
minutes, or when checkpoint_segments 16MB WAL segments have been used
since the last checkpoint. We increased checkpoint_timeout from the default of
3 minutes to 30, and checkpoint_segments from the default of 3 to 128, believ-
ing 128 checkpoint_segments were enough, even for the largest VM, to let
checkpointing be governed by checkpoint_timeout. Tests, however, showed
that we were checkpointing as often as once every 2 minutes. We needed to increase
checkpoint_segments to 1,920 segments on the largest VM; we used 5,120 to
be safe. This change gave us a 2% improvement to 4,841 tps. Table 6 has the back-

ground writer stats section of the
pgstatspack outputs before and after
the change for 30-minute runs. The
checkpoints_timed and check-
points_req counts show that origi-
nally, there were 15 checkpoints
triggered because the database had
used all the WAL segments, and
none due to reaching the checkpoint
frequency timer. After increasing
the number of WAL segments, we
see only a single time-triggered
checkpoint.

Table 4. I/O stats for DSS VM with one and two 2 file

 wrqm/s r/s w/s rkB/s wkB/s avgrq avgqu await

1 FS Data+log 1830 11151 2767 138602 33956 25 30 2.14

2 FS data 2406 12350 2278 181902 18737 27 40 2.71
log 343 0.34 134 1 17854 264 0.3 1.87

Table 5. I/O stats for OLTP VM with one and two 2 file systems

 wrqm/s r/s w/s rkB/s wkB/s avgrq avgqu await

1 FS Data+log 403 542 476 7682 5552 27 5.1 4.75

2 FS Data 194 860 145 15613 1357 34 6.3 6.29
log 1 0.04 225 0.16 3066 27 0.3 1.15

92 A. Bond et al.

7 Conclusions

The TPC-V reference benchmarking kit, which is at the heart of the benchmark, is
nearly complete. It provides all the novel properties of TPC-V: a heterogeneous com-
bination of workloads driven to many VMs, a deterministic distribution of load over
the VMs regardless of how each VM handles the load, and dynamically varying the
load levels to VMs to emulate the elasticity of load in the cloud. Using this kit, we
have discovered several optimizations for a PostgreSQL implementation of TPC-V.

Acknowledgements. We thank Cecil Reames for VGen and specification reviews,
Matt Emmerton, John Fowler, and Jamie Reding for TPC-E knowledge, Karl Huppler
and Wayne Smith for high level benchmark requirements, and Jignesh Shah for
PostgreSQL advice.

References

1. Bond, A., Kopczynski, G., Reza Taheri, H.: Two Firsts for the TPC: A Benchmark to Cha-
racterize Databases Virtualized in the Cloud, and a Publicly-Available, Complete End-to-
End Reference Kit. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp.
34–50. Springer, Heidelberg (2013)

2. Figueiredo, R., Dinda, P.A., Fortes, J.A.B.: ‘Guest Editors’ Introduction: Resource Virtua-
lization Renaissance. Computer 38(5), 28–31 (2005), http://www2.computer.org/
portal/web/csdl/doi/10.1109/MC.2005.159

3. Nanda, S., Chiueh, T.-C.: A Survey on Virtualization Technologies. Technical Report
ECSL-TR-179, SUNY at Stony Brook (February 2005), http://www.ecsl.cs.
sunysb.edu/tr/TR179.pdf

4. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future
Trends. Computer 38(5), 39–47 (2005)

5. Sethuraman, P., Reza Taheri, H.: TPC-V: A Benchmark for Evaluating the Performance of
Database Applications in Virtual Environments. In: Nambiar, R., Poess, M. (eds.) TPCTC
2010. LNCS, vol. 6417, pp. 121–135. Springer, Heidelberg (2011)

6. Smith, G.: PostgreSQL 9.0 High Performance. Packt Publishing (October 20, 2010)
7. Smith, W.D., Sebastian, S.: Virtualization Performance Insights from TPC-VMS,

http://www.tpc.org/tpcvms/tpc-vms-2013-1.0.pdf
8. SPECvirt_sc2010 benchmark info, SPEC Virtualization Committee,

http://www.spec.org/virt_sc2010/
9. SPECvirt_sc2013 benchmark info, SPEC Virtualization Committee,

http://www.spec.org/virt_sc2013/
10. TPC: Detailed TPC-C description, http://www.tpc.org/tpcc/detail.asp
11. TPC: Detailed TPC-E Description,

http://www.tpc.org/tpce/spec/TPCEDetailed.doc
12. TPC: TPC Benchmark H Specification,

http://www.tpc.org/tpch/spec/tpch2.14.4.pdf
13. TPC: TPC Benchmark DS Specification,

http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf
14. VMware, Inc.,

http://www.vmware.com/products/vmmark/overview.html

