

TPC Procedures

Version 1.0

 November 2021

Transaction Processing Performance Council

781 Beach St, Suite 302

San Francisco, CA 94109

Phone: (415) 561-6272

FAX: (415) 561-6120

Email: info@tpc.org

http://www.tpc.org
© 2021 Transaction Processing Performance Council

All Rights Reserved

mailto:info@tpc.org
mailto:info@tpc.org
http://www.tpc.org/
http://tpc.org/default.asp

TPC Procedures, Revision 1.0 Page 2 of 13

Legal Notice

The TPC reserves all right, title, and interest to this document and associated source
code as provided under U.S. and international laws, including without limitation all patent
and trademark rights therein.

Permission to copy without fee all or part of this document is granted provided that the
TPC copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Transaction Processing Performance Council. To
copy otherwise requires specific permission.

Trademarks

TPC, TPC Benchmark, TPC-C, TPC-E, TPC-H, TPC-DS and TPC-VMS are trademarks
of the Transaction Processing Performance Council.

Product names, logos, brands, and other trademarks featured or referred to within this
Specification are the property of their respective trademark holders.

TPC Membership

A list of the current TPC Member companies can be found at
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc_membership.pdf

TPC Procedures, Revision 1.0 Page 3 of 13

Document Revision History

Date Version Description

August 2019 0.1 Initial Draft

January 2020 0.2 Second Draft

January 2020 0.3 Third Draft

November 2021 1.0 Added Open Source Development and License Compliance Testing

TPC Procedures, Revision 1.0 Page 4 of 13

Typographic Conventions

 The following typographic conventions are used in this specification:

Convention Description

Bold Bold type is used to highlight terms that are defined in this document

Italics
Italics is used to highlight text that should be used in TPC documents
verbatim

UPPERCASE N/A

TPC Procedures, Revision 1.0 Page 5 of 13

Table of Contents

Section 0: Terms, Notation, and Policy Modification ... 6

0.1 Notation ... 6

0.2 Defined Terms ... 6

Section 1: TPC Software Development .. 7

1.1 Problem Reports .. 7

1.2 TPC Confidential Development ... 7

1.3 Open Source Development ... 7

1.4 Testing ... 9

1.5 License compliance testing ... 9

1.6 Release .. 9
1.6.1 TPC Confidential Development ... 9
1.6.2 Open Source Development ... 10

Section 2: TPC GitHub Usage .. 11

2.1 General ... 11

2.2 Repositories ... 11

2.3 Repository Naming .. 11

2.4 Creation of Repositories .. 12

2.5 Access Control... 12
2.5.1 Private Repositories .. 12

2.5.1.1 “Non-Code” Repositories (Standing Committees) .. 13
2.5.2 Public Repositories.. 13

TPC Procedures, Revision 1.0 Page 6 of 13

Section 0: Terms, Notation, and Policy Modification

0.1 Notation

0.1.1 A reference to a specific clause in the Bylaws, Policies or Procedures is written as “Bylaws
§ x.y.z”, “Policies § x.y.z” or “Procedures § x.y.z”, respectively, where x.y.z is the clause
number.

0.1.2 Throughout the body of this document, defined terms (see Procedures § 0.2) are formatted in
the same style as used in the term definition to indicate that the term has a precise meaning.
For example, “Members” specifically refers to voting members of the TPC, whereas
“members” does not have any special meaning.

0.2 Defined Terms

Comment: Any defined term that is not listed in this section shall be found in the Policies.

0.2.1 Committer – An individual who has permissions to commit code in the GitHub project.

0.2.2 Code Maintenance Team – An optional team made up of all Committers and only
Committers who will maintain the GitHub code repositories for the subcommittee

0.2.3 Policies. The current published Policies of the TPC

0.2.4 Procedures. The current Procedures of the TPC, i.e., this document

TPC Procedures, Revision 1.0 Page 7 of 13

Section 1: TPC Software Development

1.1 Problem Reports

To facilitate problem reporting, the TPC will provide a problem reporting tool via a web-based
interface (or through other mechanisms as defined by the Council).

1.1.1 Members are encouraged to report problems to the TPC in a timely fashion.

1.1.2 Problem reports will be classified as one of the following:

• Bug / Error: A problem that prevents the proper operation of the TPC-Provided
Software. This includes any problem that arises out of a change in the version of the
TPC-Provided Software (e.g. v1.0.0 works fine, but v1.0.1 fails to operate properly).

• New Feature / Enhancement: A request for new (or enhanced) functionality.

• Portability: A problem that prevents the operation of TPC-Provided Software with a
specific combination of hardware, operating system, compiler and/or data manager. This
includes issues of the following nature:

a) Enhancement requests to add support for a new version of a platform (e.g. Add
support for MyDBMS v2.0.0)

b) Error reports indicating that TPC-Provided Software no longer works correctly as a
result of the platform change (e.g. v1.0.0 compiles fine on OS v1.x but fails on OS
v2.x).

1.2 TPC Confidential Development

Changes to TPC-Provided Software by a subcommittee will follow the process outlined in the
following clauses.

1.2.1 A document describing the requirements for a code change is produced. The change must be
linked to one or more problem reports entered in the problem reporting system (See
Procedures § 1.1).

1.2.2 The subcommittee must vote to accept the documented requirements before considering any
code changes. (See Policies § 3.5.4.2) The subcommittee may modify the requirements
during the acceptance process. The subcommittee is encouraged to develop a test case for
any proposed changes.

1.2.3 The code change and any test case(s) will be made available for evaluation and a notification
sent to the subcommittee. Code changes and test case(s) will only be accepted if a signed
CLA is on file with the TPC Administrator.

1.2.4 Code changes must be accepted by a vote of the subcommittee. (See Policies § 3.5.4.2)

1.3 Open Source Development

1.3.1 Each Open Source project on the TPC’s GitHub location will have a sponsoring TPC
subcommittee. The sponsoring subcommittee will not always be the TPC-OSS subcommittee.
The subcommittee who’s charter most closely relates to the code being developed should be
the sponsoring subcommittee of the project.

1.3.2 A Code Maintenance Team of at least three Committers can be formed to manage the
project on GitHub if the sponsoring subcommittee does not want to manage individual
commits.

TPC Procedures, Revision 1.0 Page 8 of 13

A Committer must meet the following criteria:

• Knowledge of the project

• Understanding of the long term goals of the project

• Understanding of the process and tools involved in the project

• Good attendance at the Code Maintenance Team meetings (See Policies § 3.5.4.7 as
guidance)

One of the Committers on the Code Maintenance Team must be designated as the Code
Maintenance Team Lead role by the Code Maintenance Team members. The duties of the
Code Maintenance Team Lead role include providing organizational logistics for the Code
Maintenance Team such as scheduling meetings and being the primary interface back to the
sponsoring subcommittee.

1.3.3 A Code Maintenance Team can meet separately and at a different cadence than the
sponsoring subcommittee.

1.3.4 A Code Maintenance Team’s responsibilities will include but not be limited to the following

• Open new issues

• Prioritize issues

• Begin work on new or existing issues

• Assign issues to TPC members or non-TPC individuals to work on

• Close issues once they are completed

• Approve pull requests

1.3.5 The Code Maintenance Team will give a report at a cadence requested by the sponsoring
subcommittee on the current work going on in the open source project.

1.3.6 Code Maintenance Team membership maintenance

• Formation – The initial members of a Code Maintenance Team will be voted on by the
sponsoring subcommittee

• A Code Maintenance Team will always have at least two Committers coming from the
sponsoring subcommittee from at least two different member companies.

▪ Member companies cannot accept their own pull requests

• Code maintenance members may be individuals that are not from a TPC member
company.

▪ Associate Membership or NDA required to be on the Code Maintenance Team

▪ Committers cannot accept their own pull requests

• Multiple Committers from the same member company are allowed.

1.3.7 Changes to the membership of the Code Maintenance Team can be proposed by either the
Code Maintenance Team or the sponsoring subcommittee, but must be approved by a
majority vote in the sponsoring subcommittee

1.3.8 Dissolution – The sponsoring subcommittee can sunset a Code Maintenance Team by a
super majority vote. The responsibilities of managing the GitHub project and individual
commits would become the responsibility of the sponsoring subcommittee.

TPC Procedures, Revision 1.0 Page 9 of 13

1.4 Testing

All TPC-Provided Software must be tested on a representative set of platforms with the
assistance of member companies or in the case of software developed in open source, the
community. The type and amount of testing performed on each platform must be sufficient to
ensure proper operation of the TPC-Provided Software. The following categories provide
guidelines for the types of testing which is expected.

1.4.1 Platform testing of source code: Simple tests that validate the quality of the source code
and compliance with coding best practices. This includes verifying that the source code
compiles without warnings on a representative set of platforms, as well as testing with third-
party code analysis tools used to validate the code for best practices (e.g. memory leaks,
exception handling, etc.).

1.4.2 Platform testing of executable code: Tests that validate the required functionality of code.
Tests also verify that exception handling is correct and check for memory leaks and other
unintended side effects.

1.4.3 Unit testing: Tests for specific functionality, on a routine or method basis. Test cases are
generally simple (input X produces output Y). Examples include random number and
date/time generation.

1.4.4 Functional testing: Tests designed to exercise specific functionality on a subsystem basis.
Test cases are more complicated and may require specialized code to simulate the operation
of the benchmark and/or validate the results of the simulation. Examples include input
generation and mix control.

1.4.5 End-to End testing: Tests the entire operation of the benchmark, performed by Members or
in the case of software developed in open source, the community in their environment(s).
Test cases are designed to validate the data generated by a revision of the code are
comparable to previous versions and verify no functional differences have been introduced.

1.5 License compliance testing

A software license scan must be done on all TPC-Provided Software before it is released.

A member company that has access to license compliance testing tools that the TPC does not
may use their tools to test for license compliance and provide the TPC with the results.

The responsibility for license compliance is the responsibility of the Benchmark subcommittee
if the code was not developed as open source

The responsibility for license compliance is the responsibility of the sponsoring subcommittee
if the code was developed as open source

The sponsoring subcommittee can assign the license compliance responsibilities to the Code
Maintenance team if one exists in the subcommittee

1.6 Release

1.6.1 TPC Confidential Development

To create a revision of TPC-Provided Software, the subcommittee must:

1.6.1.1 Collect all approved code changes to include in the revision (Procedures § 1.2), as appropriate
for the type of revision level (Policies § Error! Reference source not found.).

TPC Procedures, Revision 1.0 Page 10 of 13

1.6.1.2 Produce a “beta” revision of the code with sufficient lead time to allow member companies to
integrate the code into their environment for verification of the proposed changes. The “beta”
revision could be identified with a fourth-level identifier.

1.6.1.3 Perform appropriate testing (Procedures § 1.4) to ensure the proposed changes (Procedures
§ 1.2) properly address the associated problem reports (Procedures § 1.1) and ensure that
no new problems are introduced.

1.6.1.4 Ensure that a least one member company tests the proposed changes in an end-to-end
environment (Procedures § 1.4.5) and report back in a timely manner.

1.6.1.5 The details of the testing performed must be documented in subcommittee meeting minutes.

1.6.1.6 Resolve any reported issues with the proposed changes to the satisfaction of the
subcommittee.

1.6.1.7 If any previously approved code changes cannot be included in the release for any reason,
exclusion requires a subcommittee vote. (See Policies § 3.5.4.2)

1.6.1.8 The subcommittee must vote to release an official revision of the TPC-Provided Software for
approval by the Directors.

Comment: The voting requirements to approve the type of revision level for the changes to
TPC-Provided Software are specified in the Benchmark Class requirements. In the case of
TPC-Provided Software that is independent of a Benchmark Standard, the voting
requirements are listed in Policies § Error! Reference source not found..

1.6.2 Open Source Development

To create a revision of TPC-Provided Software, the subcommittee must:

1.6.2.1 Collect all approved code changes to include in the revision (Procedures § 1.2), as
appropriate for the type of revision level (Policies § Error! Reference source not found.).

1.6.2.2 Optionally produce a “beta” revision of the code with sufficient lead time to allow member
companies and the community to integrate the code into their environment for verification of
the proposed changes. The “beta” revision could be identified with a fourth-level identifier.

1.6.2.3 Perform appropriate testing (Procedures § 1.4) to ensure the proposed changes (Procedures
§ 1.2) properly address the associated problem reports (Procedures § 1.1) and ensure that
no new problems are introduced.

1.6.2.4 Ensure that a least one member company or community member tests the proposed changes
in an end-to-end environment (Procedures § 1.4.5) and report back in a timely manner.

1.6.2.5 Resolve any reported issues with the proposed changes to the satisfaction of the sponsoring
subcommittee and/or Code Maintenance Team if one exists.

1.6.2.6 The subcommittee must vote to release an official revision of the TPC-Provided Software.

Comment: The voting requirements to approve the type of revision level for the changes to
TPC-Provided Software are specified in the Benchmark Class requirements. In the case of
TPC-Provided Software that is independent of a Benchmark Standard, the voting
requirements are listed in Policies § Error! Reference source not found..

TPC Procedures, Revision 1.0 Page 11 of 13

Section 2: TPC GitHub Usage

2.1 General

All source code, documentation and issue tracking for TPC Benchmarks and TPC-Provided Software is
to be maintained in GitHub repositories.

2.2 Repositories

With GitHub, the central unit is the repository. A repository is a place for source code,
documentation, or other materials that are to be version controlled (henceforth "materials") and
comes with an issue tracker and a wiki.

For large enterprise projects, there is some debate about whether to keep materials and issues in the
same repository. In large projects, since the group of people creating issues are different than the group
of people maintaining the materials, it is prudent to use separate repositories for materials and issues, so
access can be managed more granularly.

However, for TPC purposes, the vast majority of issues will come from developers themselves, and thus it
should be fine to track issues in the same repository as the materials. In addition, within a single
repository, a user can have read-only access to materials and read-write access to issues and the wiki, so
this allows for a suitable level of access control given our rules around code access and the CLA.

Resolution #1: We will keep materials and issues in the same repository.

The TPC also produces two main types of material -- TPC Specifications and TPC-Provided Software.
Specifications can range from a user-guide type of documentation (for Express benchmarks), to very
detailed implementation documents (for Enterprise benchmarks). TPC-Provided Software can range
from simple data generators (for Enterprise benchmarks) to full end-to-end kits (for Express benchmarks).

Since we have CLA requirements for code, but no such requirement for documentation (specifications), it
would make sense to keep Specifications and Software in separate repositories.

While this does mean two repositories (and sets of issues) to track, there are various tools for GitHub that
can provide unified views of outstanding issues to make it simpler to do issue triage / project planning.

Resolution #2: We will keep code and non-code materials in separate repositories.

2.3 Repository Naming

So how should we name the repositories? We know that there are code and non-code
repositories, so that will need to be part of the name. In general code and non-code materials
are associated with a single benchmark (since we are not the best at sharing and reusing), but
we also need to consider the potential that a single committee may maintain multiple
specifications or software packages, so the software package or specification name should be
part of the repository name as well. A third token should be allowed for differentiation (eg,
major versions that entail complete rewrites, archived code from other repositories, and so
on.)

Resolution #3: The following three-part naming convention will be used.

<repo_name> := <scope_name> '-' <other_name> '-' <type_name>

<scope_name> := <package_name> | <benchmark_name> | <committee_name>

<package_name> := <alnum>

<benchmark_name> := <alnum>

<committee_name> := <alnum>

TPC Procedures, Revision 1.0 Page 12 of 13

<other_name> := 'software' | 'kit' | 'benchmark' | 'general'

<type_name> := 'code' | 'noncode'

<alnum> := ‘a’ through ‘z’, ‘A’ through ‘Z’, ‘0’ through ‘9’

Examples:

EGen-software-code # for EGen code

TPCE-benchmark-noncode # for TPC-E specification

TPCxBB-kit-code # for TPCx-BB kit

TPCxBB-benchmark-noncode # for TPCx-BB specification

Pricing-general-noncode # for TPC-Pricing specification

OSS-general-noncode # for OSS general non-code materials

HammerDB-software-code # for HammerDB

OpenDataGen-software-code # for an open-source data generator

2.4 Creation of Repositories

In what situations would we need to create new repositories? In general we need a repository
for any sizable piece of work that we intend to make public (such as a specification or
software), or possibly to support the operation of a Standing Committee or a technical
subcommittee.

Resolution #4: The following actions may drive the creation of a new repository:

- a new benchmark specification
- a new software package or kit
- a major revision of a benchmark or software package (that are substantial, such as a re-architecture)
- license changes to a software package or kit

Access Control

2.5 Access Control

2.5.1 Private Repositories

Under Policies § 1.1, the contents of source code and/or document repositories are considered TPC
Confidential. The contents of these repositories are intended to be open to all Members. However,
given the legal requirements of our CLA, access controls must be maintained on repositories containing
TPC source code.

“Source Code” Repositories

Any 'code' repository:TPC

• read-write access: specific users with business need and signed CLA on file

• read-only access: all Members

“Non-Code” Repositories (except for Standing Committees)

Any 'non-code' repository except for standing committees:

• read-write access: all TPC Members

• read-only access: <none>

TPC Procedures, Revision 1.0 Page 13 of 13

2.5.1.1 “Non-Code” Repositories (Standing Committees)

 Any 'non-code' repository for Standing Committees:

a) read-write access: Standing Committee members only

b) read-only access: <none>

2.5.2 Public Repositories

The contents of public source code and/or document repositories are not considered TPC Confidential.
The contents of these repositories are intended to be open to the public. Only designated committers
will have access to merge pull requests.

Any 'code' repository which is “Public” in github:

 read-write access: specific users with business need and signed CLA on file

 read-only access: anyone

Bug submission, discussion forum posting, and pull request submission is categorized as read-only
access

