TPC Benchmark™ C
Full Disclosure Report

for
IBM® @server™ xSeries® 235
using
Microsoft® SQL Server 2000 Standard Edition

and

Microsoft Windows® Server 2003 Standard Edition

TPC-C Version 5.1

Submitted for Review
July 10, 2003

I
I
I
®

First Edition - July 2003

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS
WITHOUT ANY WARRANTY EITHER EXPRESSED OR IMPLIED. The use of this information or the
implementation of any of these techniques is the customer’s responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item has been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only
IBM’s licensed program may be used; any functionally equivalent program may be used.

This publication was produced in the United States. IBM may not offer the products, services, or features discussed
in this document in other countries, and the information is subject to change without notice. Consult your local IBM
representative for information on products and services available in your area.

© Copyright International Business Machines Corporation 2003. All rights reserved.

Permission is hereby granted to reproduce this document in whole or in part, provided the copyright notice as
printed above is set forth in full text on the title page of each item reproduced.

U.S. Government Users - Documentation related to restricted rights: Use, duplication, or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo,the IBM e-business logo, and xSeries are trademarks or registered trademarks of International
Business Machines Corporation.

The following terms used in this publication are trademarks of other companies as follows: TPC Benchmark, tpmC,
and $/tpmC trademark of Transaction Processing Performance Council; Intel and Pentium are registered trademarks
of Intel Corporation; Microsoft, Windows and BenchCraft are trademarks or registered trademarks of Microsoft
Corporation. Other company, product, or service names, which may be denoted by two asterisks (**), may be
trademarks or service marks of others.

Notes

! MHz only measures microprocessor internal clock speed, not application performance. Many factors affect
application performance.

2 When referring to hard disk capacity, GB, or gigabyte, means one thousand million bytes. Total user-accessible
capacity may be less.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 2

Abstract

IBM Corporation conducted the TPC Benchmark™ C on the IBM @server xSeries 235 configured as a

client/server system. This report documents the full disclosure information required by the TPC Benchmark™ C
Standard Specification, Revision 5.1, including the methodology used to achieve the reported results. All testing
fully complied with this revision level.

The software used on the x235 system includes Microsoft Windows Server 2003 Standard Edition operating system

and Microsoft SQL Server 2000 Standard Edition database.

Two standard metrics, transactions per minute-C (tpmC) and price per tpmC ($/tpmC), are reported as required by
the TPC Benchmark C Standard Specification.

The benchmark results are summarized in the following table.

Total System

Total Solution

Microsoft Windows
Server 2003 Standard
Edition

Hardware Software Cost tpmC $/tpmC | Availability Date
Microsoft SQL Server
xSeries 235

The results of the benchmark and test methodology used were audited by Bradley J. Askins of InfoSizing, Inc. The

auditor’s attestation letter is contained in Section 9 of this report.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

IBM (@server™ xSeries® 235 ¢/s
With

TPC-C Rev. 5.1

Microsoft® SQL Server 2000 | Report Date: July 10, 2003

Total System Cost TPC-C Throughput Price/Performance Availability Date
$46,539 18,936.05 tpmC $2.46 / tpmC July 10, 2003
Processors Database Manager | Operating System Other Software Number
of Users
Database Server: 1
Intel® Xeon™ DP Microsoft Microsoft Microsoft Visual C++
3.06GHz SQL Server 2000 | Windows® Server Microsoft COM+ 15,300
. Standard Edition 2003 Standard
Client: 1 Xeon DP Edition
2.4GHz

1 RTE emulating 15,300 Users

1 x IBM xSeries 225
1 x 2.4GHz Xeon DP

1 x IBM xSeries 235
1 x 3.06GHz/512KB Xeon DP

3 x Mylex AcceleRAID A352 Adapters

1 x 18.2GB Drive
2 x 73.4GB Drives

3 x EXP300 Storage
42 x18.2GB Drives

System Component Qty [Server Qty | Client
Processors 1 |[3.06GHz Xeon DP 1 |2.4GHz Xeon DP
Cache 512KB L2 Cache 512KB L2 Cache
Memory 2 | 256MB 4 |[256MB
2 [1GB ECC SDRAM
RDIMM
Disk Controllers 3 | Mylex AcceleRAID A352 1 [Ultra320 SCSI Interface
Adapter with 32MB
1 | Integrated Ultra320 SCSI
Disk Drives 42 (18.2GB (15000 rpm) 1 [18.2GB (10000 rpm)
2 [73.4GB (10000 rpm)
1 |18.2GB (10000 rpm)
Total Storage 863.43GB
Tape Drive 1 |20/40GB SCSI Tape Drive

IBM @server xSeries 235 ¢/s | TPC-C Rev. 5.1
IBM Corporation with
Microsoft SQL Server 2000 Report Date: July 10, 2003
Description Order Number Third-Party Unit Qty Ext. Price 3-Yr.
Brand Pricing Price Maint.*
Server Hardware
xSeries 235 w/ 1 x 3.06GHz/512KB Xeon DP 8671-81X IBM 1 $2,949 1 $2,949 $689
2 x 256MB PC2100 ECC SDRAM
Integrated Dual-Channel Ultra320 SCSI
1GB ECC SDRAM RDIMM Memory Kit 33L5039 IBM 1 659 2 1,318 0
18.2GB 10K Ultra160 SCSI Drive 06P5754 IBM 1 275 1 275 0
Mylex AcceleRAID A352 SCSI Adapter (+2) 08P2420 Mylex 3 580 5 2,900 0
Netfinity 4.2M Ultra2 SCSI Cable 03K9311 IBM 1 105 6 630 0
E54 15” (13.8” Viewable) Color Monitor* 633147N IBM 1 129 1 129 90
20/40GB Internal SCSI Tape Drive 0ON7991 IBM 1 699 1 699 0
Storage Hardware
EXP300 Rack Storage Enclosure* 3531-1RU IBM 1 3,179 3 9,637 600
18.2GB 15K Ultra160 SCSI Drive 06P5767 IBM 1 329 42 13,818 0
73.4GB 10K Ultra160 SCSI Drive 06P5756 IBM 1 639 2 1,278 0
NetBAY11 Enterprise Rack* 9306110 IBM 1 519 1 519 168
Subtotal $34,052 $1,547
Server Software
Microsoft SQL Server 2000 Standard Edition 228-01079 Microsoft 2 4,999 1 $4,999 $0
Microsoft Windows Server 2003 SE P73-00295 Microsoft 2 738 1 738 0
Three-Year Maintenance for Software Microsoft 2 1,950 3 5,850
Subtotal $5,737 $5,850
Client Hardware
xSeries 225 / 2.4GHz/512KB Xeon DP* 8647-3AX IBM 1 1,269 1 $1,269 $689
2 x 256MB PC2100 ECC SDRAM
256MB PC2100 ECC SDRAM RDIMM 33L5037 IBM 1 165 2 330 0
18.2GB 10K Ultra160 SCSI Drive 06P5754 IBM 1 275 1 275 0
IBM 10/100 Dual-Port Server Adapter 22P4901 IBM 1 209 2 418 0
E54 15” (13.8” Viewable) Color Monitor* 633147N IBM 1 129 1 129 90
Subtotal $2,421 $779
Client Software
Microsoft Windows 2000 Server with COM+ C11-00821 Microsoft 2 738 1 738 0
Microsoft Visual C++ Standard 254-00170 Microsoft 2 109 1 109 0
Subtotal $847 $0
User Connectivity
Cross-over Cable (7 ft.)** (+2) CBLC5C7 4 2 3 6 0
Subtotal $6 $0
Total $43,063 $8,176
IBM hardware discount of 14%; prices vary if purchased separately. 1 $4,700 $0
Notes: * The standard 3-year warranties on IBM hardware have been Three-Year Cost of Ownership: $46,539
upgraded to 7x24, 4-hour response time coverage.
** Five-year warranty. *** 10% or minimum 2 spares are added in place of
on-site service (products have a 5-year return-to-vendor-warranty) tpmC Rating: 18,936.05
1 - IBM List Price, 1-866-426-0472; 2 - Microsoft Corp.; 3 - Computer
Giants; 4 - LanAdapters.com $ / tpmC: $2.46
Audited by Bradley J. Askins of InfoSizing, Inc.

Prices used in TPC benchmarks reflect the actual prices a customer would pay for a one-time purchase of the stated components.

Individually negotiated discounts are not permitted. Special prices based on assumptions about past or future purchases are not permitted.

All discounts reflect standard pricing policies for the listed components. For complete details, see the pricing sections of the TPC

benchmark specification. If you find that stated prices are not available according to these terms, please inform the TPC at pricing@tpc.org.

Thank you.

Numerical Quantities Summary

MQTh, Computed Maximum Qualified Throughput:

18,936.05 tpmC

gsssr;c;r:‘z'sl')imes 90th Percentile Average Maximum
New-Order 0.82 0.56 6.38
Payment 0.54 0.32 5.08
Delivery 0.41 0.21 1.03
Stock Level 4.54 2.54 6.92
Order Status 0.75 0.49 7.65
Delivery (Deferred) 1.85 1.25 4.75
Menu 0.42 0.22 1.08
Response Time Delay Added for Emulated Components: 0.1 Seconds

Transaction Mix (in percent of total transactions) Percent
New-Order 44 .87
Payment 43.00
Delivery 4.06
Stock-Level 4.03
Order Status 4.04
:?z)(si:gcl’l"l;i;l)k LLLLE Minimum Average Maximum
New Order 18.00/0.00 18.01/12.04 18.03/120.50
Payment 3.00/0.00 3.01/12.04 3.03/120.50
Delivery 2.00/0.00 2.01/5.03 2.04/50.50
Stock Level 2.00/0.00 2.01/5.03 2.03/50.50
Order Status 2.00/0.00 2.01/10.01 2.02/100.50

Test Duration

Ramp-up time

30 minutes 15 seconds

Measurement interval 120 minutes
Number of checkpoints 4
Checkpoint interval 30 minutes
Number of transactions (all types) completed in measurement interval 5,270,282

Table of Contents

A raCt . . 3
Numerical Quantities Summary 5
Preface 11
General [tems 12
Application Code Disclosure and Definition Statementst .. 12
Benchmark Sponsor 12
Parameter SEHHNGSottt et e e e e 12
Configuration DIQ@ramsttt ettt e e e e 12
Clause 1: Logical Database Design Related Items 14
Table Definitionsottt e e 14
Physical Organization of the Database 14
Insert and Delete OPerationsttt ittt ettt et et e e 14
Horizontal or Vertical Partitioningttt et 14
ReplICation e 14
Table AHIIDULESo 14
Clause 2: Transaction and Terminal Profiles Related

L) 11 15
Random Number Generationttt e e ettt e e e et 15
SCreen Layoutt e 15
Terminal Veriflcation e 15
Intelligent Terminals 15
Transaction Profiles 15
Deferred Delivery Mechanism 16
Clause 3: Transaction and System Properties Related

OIS . . . 17
Atomicity REqUITEMENTSo e 17
Consistency ReqUITEMENtSottt e e 17
Isolation ReqUITEMENTSttt e et et e e e e 18
Durability Requirementsottt 18
Clause 4: Scaling and Database Population Related Items 20
Cardinality of Tables e 20
Distribution of Tables and Logsot 21
Database Model Implemented i e 21
Partitions/Replications Mappingou ittt ettt e e 21
60-Day Space ReqUIrementttt e ettt 21
Clause 5: Performance Metrics and Response Time

Related Ttems 22
Measured tpmC 22
ResSpONSe TIMeES . ..ottt e e e e e e e 22
Keying/Think Timesttt e e e et et e e e e e e et et e e e e 22
Response Time Frequency Distribution CUrvesiuiii et 23
Performance Curve for Response Time vs. Throughput 25
New Order Think Time Distribution e et 26
Throughput vs. Elapsed Time e e e et 26
Steady State Methodologyot 27
Work Performed during Steady State 27
CRECKPOINES . . ottt e et e e e e e 27
Measurement INterval 27
Transaction MIX ..o 27
Percentage of Total MIXottt e 28
Number of ChecKpoints e e et e e e 28
Clause 6: SUT, Driver and Communication Definition

Related Items 29

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 7

Description of RTE 29

Emulated COMPONEGNLSttt ettt e e e 29
Benchmarked and Targeted System Configuration Diagrams it .. 29
Network Configurationttt et ettt e 29
Network Bandwidth e 29
Operator INterventionttt 29
Clause 7: Pricing Related Items e 30
Hardware and Software COmMPONENLS\ttt ettt et ettt et 30
Availability Date 30
Measured tpmC e 30
Country-Specific Pricing 30
UsSage PriCingo 30
SYStEM PriCIng . ..ot 31
Clause 9: Audit Related Items 32
AUAIIOT .o 32
Availability of the Full Disclosure Report 32
AtteStation letter 33
Appendix A: Source Code 35
Client ULIIS.C o e 35
client UtilS.h 36
dildata.c 37
EITOT. R o o 37
INSHAll.C o e 39
INStAll.h .« . 47
installre 47
INStall com.cPp 50
LICEMSEAXT oot e et e 52
MON_CHIENE.C . . . o o 54
MON_ClIent.h o 57
FEAAME.IXE . . ottt e 57
FEAATCZISIIY.COP .« o v o v ot ettt e et e e e e e e e e e e e 57
readregiStry.l . . . e 58
FESOUFCE.N . .o i 58
FESOUICe_IPCC TC.I .o oo e 59
FLELIME. R . oo oot 59
SPINLOCK. . . o e 59
IDCC.CPP .« e e e e e e e e e e e e 60
IDCCAEf . o 83
IDCC. I o e 83
IDCCTC e et e e e e e e e e e e e e e e &5
IDCC_COMLCPD -« . o e e e e et e 86
IDCC COMI .« oo 87
tpce_com_all.dsp 89
IDCC_COM_PS.Aef . .o 90
IDCC_COM_PS. .o 90
Ipcc_com _ps.dl ... 92
IDCC_COM_PS I.C v v ot ettt et et e e et e e e e e e e e e et e e e e e e e e e e e 93
IDCC_COM_PS D-C v ove e et e 94
tpce dbIib.cpp 114
tpce dblib.h 124
IDCC_EHC.CPD v v e et et e e e e e e e e e e e e e e e e 125
IDCC_@NCI o e 127
IDCC_OADC.CPD . . . o e e 128
IpCC 0dbC.h .. . 135
7 TeTe T e) P 137

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 8

IDCC TUX.T oo 139

IPANS. o 140
72 7)) 7 P 141
TUXADD. I o o e e 145
FUXTIAINL.C oo oottt e e e e e e e e e e e e e e e e e e e 145
IXN_Dase. i 146
IXILOG. o e 147
WEDCINEASD . . oo e 149
WeDCINEASW e 150
Stored Procedures 152
NEWOFA.SQL . . o e 152
PAVMERLSGL . . . e 154
OFASEat.SqL . . . o e 156
delivery.sql 157
STOCKIeV.SQL . . . o 157
VEFSION.SGL . o o oo e e 158
nUll-IXn.SqL . o 158
Appendix B: Database Design 162
Database Build 162
backup.sql 162
backupdev.sql 162
createdb.SQL 162
dboptl.sql o 163
dbopt2.sql 163
IAXCUSCLSGL . . o 163
IAXCUSNC.SGL . o o 164
idxdiscl.sql 164
TAXTIMCLSGL . o o e 164
IAxnodclsql e 164
idxodlcl.sql 165
idxordclsql 165
Idxordnc.sql 165
IAXSTRCLSGL . . o 165
idxwarcl.sql 165
removedb.Sql 166
FESIOTE.SQL . o o 166
RunSQLCa.sql 166
SQIShutdown.sql 166
tables.sql 166
verify TpccLoad.sql 168
VEFSION.SGL . o o oo e 169
Load Source Code 169
GOIAVGS.C o vttt et et e e e e e e e e 169
FANAOM.C ..o o 171
SIFIIZS.C o v o e e e e e e et e e e e e e e 172
HIME.C oot ittt et e e e e e e e 175
IDCC.H o 175
IDCCLAT.C e e 176
tpecldr.mak . .. 200
Appendix C: Tunable Parameters 204
Microsoft SQL Server 2000 e 204
Configuration PArameters u et e 204
Microsoft Windows Server 2003 205
System Information Report for the X235 205
Disk Controller Configuration Parameters it 230

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 9

Integrated Ultra320 Interface e 230

Mylex AcceleRAID A352 Adapter 1 e 231
Mylex AcceleRAID A352 Adapter 2 232
Mylex AcceleRAID A352 Adapter 3 e e 233
Microsoft Windows 2000 Server with COM+ 234
Client Configuration Parametersot e 234
Client System Information Report ... e e 235
RTE Input Parametersttt e e e e et e et e e e 256
Appendix D: 60-Day Space 261
Appendix E: Third-Party Quotations 262

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 10

Preface

The TPC Benchmark™ C was developed by the Transaction Processing Performance Council (TPC). The TPC was
founded to define transaction processing benchmarks and to disseminate objective, verifiable performance data to
the industry. This full disclosure report is based on the TPC Benchmark C Standard Specification Version 5.0.

The TPC describes this benchmark in Clause 0.1 of the specification as follows:

TPC Benchmark C is an On Line Transaction Processing (OLTP) workload. It is a mixture of read-only and
update-intensive transactions that simulate the activities found in complex OLTP application environments. It does

so by exercising a breadth of system components associated with environments, which are characterized by:

« The simultaneous execution of multiple transaction types that span a breadth of complexity
+ On-line and deferred transaction execution modes

+ Multiple on-line terminal sessions

« Moderate system and application execution time

« Significant disk input/output

» Transaction integrity (ACID properties)

+ Non-uniform distribution of data access through primary and secondary keys

« Databases consisting of many tables with a wide variety of sizes, attributes and relationships
« Contention on data access and update

The performance metric reported by TPC-C is a “business throughput” measuring the number of orders processed
per minute. Multiple transactions are used to simulate the business activity of processing an order, and each
transaction is subject to a response time constraint. The performance metric for this benchmark is expressed in
transactions-per-minute-C (tpmC). To be compliant with the TPC-C standard, all references to tpmC results must
include the tpmC rate, the associated price-per-tpmC, and the availability date of the priced configuration.

Despite the fact that this benchmark offers a rich environment that emulates many OLTP applications, this
benchmark does not reflect the entire range of OLTP requirements. In addition, the extent to which a customer can
achieve the results reported by a vendor is highly dependent on how closely TPC-C approximates the customer
application. The relative performance of systems derived from this benchmark does not necessarily hold for other
workloads or environments. Extrapolations to any other environment are not recommended.

Benchmark results are highly dependent upon workload, specific application requirements, and systems design and
implementation. Relative system performance will vary as a result of these and other factors. Therefore, TPC-C
should not be used as a substitute for a specific customer application benchmarking when critical capacity planning
and/or product evaluation decisions are contemplated.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 11

General Items

Benchmark Sponsor

A statement identifying the benchmark sponsor(s) and other participating companies must be provided.

This benchmark was sponsored by International Business Machines Corporation.

Application Code Disclosure and Definition Statements

The application program (as defined in Clause 2.1.7) must be disclosed. This includes, but is not limited to, the code
implementing the five transactions and the terminal input and output functions.

Appendix A contains all source code implemented in this benchmark.

Parameter Settings

Settings must be provided for all customer-tunable parameters and options that have been changed from the
defaults found in actual products, including but not limited to:

« Database tuning options

e Recovery/commit options

« Consistency/locking options

e Operating system and application configuration parameters.

« Compilation and linkage options and run-time optimizations used to create/install applications, OS, and/or

databases.
This requirement can be satisfied by providing a full list of all parameters and options.

Appendix C contains the tunable parameters for the database, the operating system, and the transaction monitor.

Configuration Diagrams

Diagrams of both measured and priced configurations must be provided, accompanied by a description of the
differences.

The configuration diagrams for the tested and priced systems are provided on the following pages.

The Remote Terminal Emulator (RTE) used for these TPC Benchmark C tests is the Microsoft BenchCraft RTE.
Under Version 5.0, the components of the configuration being emulated by the RTE are the workstations and the
Ethernet hubs. Appendix C contains a listing of the RTE scripts and inputs used in the benchmark testing.

The benchmarked configuration used an IBM xSeries 225 system as the client, which executed the terminal I/O and
submitted transactions to COM+ servers, which are also running on the clients. These COM+ servers forwarded the
transaction requests to the server, and returned the results to the RTE. Microsoft SQL Server 2000 Standard Edition
is the DBMS executing on the server

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 12

Measured and Priced Configuration

1 RTE emulating 15,300 Users

1 x IBM xSeries 225
1 x 2.4GHz Xeon DP

-
-

1 x IBM xSeries 235
1 x 3.06GHz/512KB Xeon DP

3 x Mylex AcceleRAID A352 Adapters
1 x 18.2GB Drive 3 x EXP300 Storage

2 x 73.4GB Drives 42 x18.2GB Drives

The measured and priced configurations were identical.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

13

Clause 1: Logical Database Design Related Items

Table Definitions

Listings must be provided for all table definition statements and all other statements used to set up the database.

Appendix B contains the code used to define and load the database tables.

Physical Organization of the Database

The physical organization of tables and indexes within the database must be disclosed.

Physical space was allocated to Microsoft SQL Server on the server disks as detailed in Figure 4-2.

Insert and Delete Operations

It must be ascertained that insert and/or delete operations to any of the tables can occur concurrently with the
TPC-C transaction mix. Furthermore, any restriction in the SUT database implementation that precludes inserts
beyond the limits defined in Clause 1.4.11 must be disclosed. This includes the maximum number of rows that can
be inserted and the maximum key value for these new rows.

All insert and delete functions were fully operational during the running of the benchmark. The space required for
an additional 5 percent of the initial table cardinality was allocated to Microsoft SQL Server 2000 and priced as
static space.

Horizontal or Vertical Partitioning

While there are few restrictions placed upon horizontal or vertical partitioning of tables and rows in the TPC-C
benchmark (see Clause 1.6), any such partitioning must be disclosed.

Partitioning was not used in this benchmark.

Replication

Replication tables, if used, must be disclosed (see Clause 1.4.6).

Replication was not used in this benchmark.

Table Attributes

Additional and/or duplicated attributes in any table must be disclosed, along with a statement on the impact on
performance (see Clause 1.4.7).

No additional attributes were used in this benchmark.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 14

Clause 2: Transaction and Terminal Profiles Related Items

Random Number Generation

The method of verification for the random number generation must be disclosed.

The seeds and offsets for the random number generator were collected and verified to be different for each driver.
The auditor selected samples of the generated numbers from the database. The samples were verified to have no
discernible patterns.

Screen Layout

The actual layouts of the terminal input/out screens must be disclosed.

All screen layouts followed the TPC Benchmark C Standard Specification.

Terminal Verification

The method used to verify that the emulated terminals provide all the features described in Clause 2.2.2.4 must be
explained. Although not specifically priced, the type and model of the terminals used must for the demonstration in
8.1.3.3 must be disclosed and commercially available (including supporting software and maintenance).

The auditor verified terminal features by direct experimentation. The benchmarked configuration uses Microsoft
Internet Explorer 5.0 and HTML scripts as the terminal interface.

Intelligent Terminals

Any usage of presentation managers or intelligent terminals must be explained.

The terminals emulated in the priced configuration are IBM PC desktop computer systems. All processing of the
input/output screens was handled by the xSeries 225 client. The screen input/output was managed via HTML strings
that comply with the HTML Version 2.0 specification. A listing of the code used to implement the intelligent
terminals is provided in Appendix A. All data manipulation was handled by the xSeries 235 database server.

Transaction Profiles

The percentage of home and remote order-lines in the New-Order transactions must be disclosed.
The percentage of New-Order transactions that were rolled back as a result of an unused item number must be
disclosed.

The number of items per orders entered by New-Order transactions must be disclosed. The percentage of home and
remote Payment transactions must be disclosed. The percentage of Payment and Order-Status transactions that

used non-primary key (C_LAST) access to the database must be disclosed.

The percentage of Delivery transactions that were skipped as a result of an insufficient number of rows in the
NEW-ORDER table must be disclosed.

The mix (i.e., percentages) of transaction types seen by the SUT must be disclosed.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 15

Table 2-1. Transaction Statistics

New Order Value (%)
Home warehouse order lines 99.00
Remote warehouse order lines 1.00
Rolled back transactions 0.98
Average number of items per order 10.00
Payment
Home warehouse payment transactions 85.06
Remote warehouse payment transactions 14.94

Non-Primary Key Access

Payment transactions using C_LAST 60.03

Order-Status transactions using C_LAST 59.89
Delivery

Delivery transactions skipped 0

Transaction Mix

New-Order 44.87
Payment 43.00
Delivery 4.06
Stock Level 4.03
Order Status 4.04

Deferred Delivery Mechanism

The queuing mechanism used to defer execution of the Delivery transaction must be disclosed.

The deferred delivery operation is queued by making an entry in an array within the application process (tpcc.dll)
running on the client. Background threads within the application asynchronously process the queued delivery
transactions.

The source code is listed in Appendix A.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

Clause 3: Transaction and System Properties Related Items

The results of the ACID test must be disclosed, along with a description of how the ACID requirements were met.
This includes disclosing which case was followed for the execution of Isolation Test 7.

Atomicity Requirements

The system under test must guarantee that database transactions are atomic, the system will either perform all
individual operations on the data, or will assure that no partially completed operations leave any effects on the
data.

All ACID tests were conducted according to specification.

Completed Transactions

The following steps were performed to verify the Atomicity of completed transactions.

1. The balance was retrieved from the CUSTOMER table for a random Customer, District and Warehouse,
giving BALANCE 1.

2. The Payment transaction was executed for the Customer, District and Warehouse used in step 1.

3. The balance was retrieved again for the Customer used in step 1 and step 2, giving BALANCE 2. It was
verified that BALANCE 1 was greater than BALANCE 2 by AMT.

Aborted Transactions

The following steps were performed to verify the Atomicity of the aborted Payment transaction:

1. The Payment application code was changed to execute a rollback of the transaction instead of performing
the commit.

2. Using the balance, BALANCE 2, from the CUSTOMER table retrieved for the completed transaction, the
Payment transaction was executed for the Customer, District and Warehouse used in step 1 of section
3.1.1. The transaction rolled back due to the change in the application code from step 1.

3. The balance was retrieved again for the Customer used for step 2, giving BALANCE _3. It was verified
that BALANCE 2 was equal to BALANCE 3.

Consistency Requirements

Consistency is the property of the application that requires any execution of a database transaction to take the
database from one consistent state to another, assuming that the database is initially in a consistent state.

Consistency conditions one through four were tested using a shell script to issue queries to the database.The results
of the queries demonstrated that the database was consistent for all four tests.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 17

Isolation Requirements

Sufficient conditions must be enabled at either the system or the application level to ensure that the required
isolation defined in Clause 3.4.1 is obtained.

Isolation tests one through seven were run using shell scripts to issue queries to the database. Each script included
timestamps to demonstrate the concurrency of operations. The results of the queries were captured and placed in
files. The auditor reviewed the results and verified that the isolation requirements had been met.

In addition, the phantom tests and the stock-level tests were run and verified.

Case A was followed for Isolation test seven.

Durability Requirements

The tested system must guarantee durability: the ability to preserve the effects of committed transactions and ensure

database consistency after recovery from any one of the failures listed in Clause 3.5.3.

e Permanent irrecoverable failure of any single durable medium containing TPC-C database tables or recovery
log data (this test includes failure of all or part of memory)

 Instantaneous interruption (system crash/system hang) in processing that requires system reboot to recover

e Failure of all or part of memory (loss of contents)

Loss of Data Test

The following steps were successfully performed to pass the Durability test of failure of a disk unit with database
tables:

1. The contents of the database were backed up to several database dump devices during the initial database
load. There were no dump devices on the disk array from which a drive was removed as part of this test.

2. The current count of the total number of orders was determined by the sum of D NEXT O _ID for all rows
in the district table giving SUM1.

3. A test was started with 10 percent of the total users submitting transactions.

4. A disk containing a portion of each of the tables in the tpcc database was removed causing SQL Server to
report errors accessing that device.

5. The run was aborted and SQL Server was restarted. Upon restart, the database tpcc reported numerous
errors relating to the failed database device.

6. The transaction log was dumped to disk and the failed disk was replaced with a spare disk and was
recovered.

7. The database was recovered and restored from the backup dump devices. Afterwards, the transaction log
was applied to the database.

8. Step 2 was repeated to obtain the current count of the total number of orders giving SUM2.

9. It was verified that the sum of D NEXT O _ID after the database is recovered is greater than or equal to
the sum of D NEXT_O_ID before the run, plus all new order transactions completed during the run minus
any rollback transactions.

10. Consistency Condition 3 was verified.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 18

Combined Loss of Log and Loss of System Test (Instantaneous Interruption and
Loss of Memory)

1.

2.

O 00 3O\ L A~

The current count of the total number of orders was determined by the sum of D NEXT O_ID for all rows
in the district table gving SUMI.

The test started with a full load with all users submitting transactions. A checkpoint was issued, and the
system continued to run for another 5 minutes.

. One of the log disk drives was removed. Since the log disk was mirrored, SQL Server continued to process

transactions without interruption.

. The test continued for another 3 minutes.

. The server under test was powered off, which removed power from the system and the memory.

. The server was powered on again.

. SQL Server was started to initiate automatic recovery from its log.

. Step 1 was repeated to obtain the current count of the total number of orders giving SUM2.

. It was verified that the sum of D NEXT O_ID after the database is recovered is greater than or equal to

the sum of D NEXT_O_ID before the run, plus all new order transactions completed during the run minus
any rollback transactions.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 19

Clause 4: Scaling and Database Population Related Items

Cardinality of Tables

The cardinality (e.g., the number of rows) of each table, as it existed at the start of the benchmark run (see Clause
4.2), must be disclosed. If the database was over-scaled and inactive rows of the WAREHOUSE table were deleted
(see Clause 4.2.2), the cardinality of the WAREHOUSE table as initially configured and the number of rows deleted
must be disclosed.

The database was originally built with 1,530 warehouses, and the audited run used all 1,530 warehouses.

Table 4-1. Initial Cardinality of Tables

Table Name Rows
Warehouse 1,530
District 15,300
ltem 100,000
New Order 13,770,000
History 45,900,000
Orders 45,900,000
Customer 45,900,000
Order Line 459,001,971
Stock 153,000,000
Inactive Warehouses 0

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 20

Distribution of Tables and Logs

The distribution of tables and logs across all media must be explicitly depicted for the tested and priced systems.)

Figure 4-2 depicts the database configuration of the tested system to meet the 8-hour steady state requirement.

Figure 4-2. Data Distribution for the Benchmarked Configuration

Controller Drives Partition Size Use

0 2 -73.4GB E: 45000MB Logfile

1 14 - 18.2GB F: 29200MB Customer and Stock
G: 14000MB Misc.

2 14 -18.2GB H: 29200MB Customer and Stock
I: 14000MB Misc.
Y: 80000MB (NTFS) Backup 1

3 14 - 18.2GB J: 29200MB Customer and Stock
K: 14000MB Misc.
Z: 80000MB (NTFS) Backup 2

Database Model Implemented

A statement must be provided that describes:

1. The database model implemented by the DBMS used (e.g., relational, network, hierarchical)

2. The database interface (e.g., embedded, call level) and access language (e.g., SOL, DL/1, COBOL,
read/write) used to implement the TPC-C transactions. If more than one interface/access language is used
to implement TPC-C, each interface/access language must be described and a list of which
interface/access language is used with which transaction type must be disclosed.

Microsoft SQL Server 2000 Standard Edition is a relational database. The interface used was Microsoft SQL Server
stored procedures accessed with Remote Procedure Calls embedded in C code using the Microsoft DBLIB interface.

Partitions/Replications Mapping

The mapping of database partitions/replications must be explicitly described.

The database was neither partitioned nor replicated.

60-Day Space Requirement

Details of the 60-day space computations, along with proof that the database is configured to sustain 8 hours of
growth for the dynamic tables (Order, Order-Line, and History) must be disclosed (see Clause 4.2.3).

See Appendix D for details about how the 60-day space requirements were calculated.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 21

Clause 5: Performance Metrics and Response Time Related

Items

Measured tpmC

Measured tpmC must be reported.

Measured tpmC: 18,936.05 tpmC
Price per tpmC: $2.46 per tpmC

Response Times

Ninetieth percentile, maximum and average response times must be reported for all transaction types as well as for

the Menu response time.

The TPC-C requirements for the average response time and the 90th percentile were met. Table 5-1 provides the

response times for each of the transaction types and the menu for the measured system.

Table 5-1. Response Times in Seconds

Transaction Type Average Maximum 90 %-tile
New-Order 0.56 6.38 0.82
Payment 0.32 5.08 0.54
Delivery 0.21 1.03 0.41
Stock Level 2.54 6.92 4.54
Order Status 0.49 7.65 0.75
Delivery (Deferred) 1.25 4.75 1.85
Menu 0.22 1.08 0.42

Keying/Think Times

The minimum, the average, and the maximum keying and think times must be reported for each transaction type.)

Table 5-2 lists the keying/think times for the measured system.

Table 5-2. Keying/Think Times

Transaction Type Average Minimum Maximum
New-Order 18.01/12.04 18.00/0.00 18.03/120.50
Payment 3.01/12.04 3.00/0.00 3.03/120.50
Delivery 2.01/5.03 2.00/0.00 2.04 /50.50
Stock Level 2.01/5.03 2.00/0.00 2.03/50.50
Order Status 2.01/10.01 2.00/0.00 2.02/100.50

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

22

Response Time Frequency Distribution Curves
Response time frequency distribution curves (see Clause 5.6.1) must be reported for each transaction type.

Figure 5-1. New-Order Transaction - Response Time Frequency Distribution

600000

500000

400000

300000

200000

100000

0

0
-100000

New Order Response Time (sec)

Figure 5-2. Payment Transaction - Response Time Frequency Distribution

700000

600000

500000

400000

300000

200000

100000

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Payment Response Time (sec)

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

Figure 5-3. Order-Status Transaction - Response Time Frequency Distribution

50000

40000

30000

20000

10000

-10000

Order Status Response Time (sec)

Figure 5-4. Delivery Transaction - Response Time Frequency Distribution

140000

120000

100000

80000

60000

40000

20000

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Delivery Response Time (sec)

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

Figure 5-5. Stock-Level Transaction - Response Time Frequency Distribution

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
-2000

Stock level Response Time (sec)

Performance Curve for Response Time vs. Throughput

The performance curve for response time vs. throughput (see Clause 5.6.2) must be reported for the New-Order
transaction.

Figure 5-6. New-Order Response Time vs. Throughput

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

New Order 90th Response Time (sec)

50 80 100

% of Max Throughput

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

New Order Think Time Distribution

Figure 5-7. New-Order Think Time Distribution

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

0
0.00 10.00 20.00 30.00 40.00 50.00 60.00

New Order Think Time (sec)

Throughput vs. Elapsed Time
A graph of throughput vs. elapsed time (see Clause 5.6.5) must be reported for the New-Order transaction.

Figure 5-8. New-Order Throughput vs. Elapsed Time

25000
~ 20000
(&]
£
g
= 15000
=}
Q
K
@ 10000
=2
o
=
= 5000
0
© © © © ©O ©O© O © O O O ©v v ©o o ©
T 94 o £ » 9o « N ©®© ¥ O < v § 0 ¥
® @ ©W W ©w o o o o o o o o o o o
» M MM M M M M M ®»® © - - -
©O O © © © © O O O O O ® ® ®» o o
& &8 &8 § &§ &8 8 8§ &8 &8 &§8 8 8 8 8 8
TR R R R RERERRRRRR s 3 8 & o
[S N N N

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

Steady State Methodology

The method used to determine that the SUT had reached a steady state prior to commencing the measurement
interval (see Clause 5.5) must be described.

Figure 5-8 shows that the system was in steady state at the beginning of the measurement interval.

Work Performed during Steady State

A description of how the work normally performed during a sustained test (e.g., checkpointing, writing redo/undo
log records) actually occurred during the measurement interval must be reported.

Transaction Flow

The RTE generated the required input data to choose a transaction from the menu. This data was time-stamped. The
response for the requested transaction was verified and time-stamped in the RTE log files.

The RTE generated the required input data for the chosen transaction. It waited to complete the minimum required
key time before transmitting the input screen. The transmission was time-stamped. The return of the screen with the
required response data was time-stamped. The difference between these two time-stamps was the response time for
that transaction and was logged in the RTE log. The RTE then waited the required think time interval before
repeating the process starting at selecting another transaction from the menu.

The RTE transmissions were sent to application processes running on the client machines through Ethernet LANSs.
These client application processes handled all screen I/O as well as all requests to the database on the server. The
applications communicated with the database server over another Ethernet LAN using Microsoft SQL Server
DBLIB library and RPC calls.

Checkpoints

Checkpoints were executed on the server during the ramp-up phase and at 30-minute intervals. The measured run
contained four checkpoints. SQL Server was started with trace flag 3502, which caused it to log the occurrence of
the checkpoint. This information was used to verify that the checkpoints occurred at the appropriate times during
the test run.

During a checkpoint, SQL Server flushes all dirty pages from its cache to disk. It places a record in the database
transaction log indicating that the checkpoint has completed and that all transactions, which were committed prior to
the checkpoint have been written to disk.

Measurement Interval

A statement of the duration of the measurement interval for the reported Maximum Qualified Throughput (tpmC)
must be included.

The measurement interval was 120 minutes.

Transaction Mix

The method of regulation of the transaction mix (e.g., card decks or weighted random distribution) must be
described. If weighted distribution is used and the RTE adjusts the weights associated with each transaction type,
the maximum adjustments to the weight from the initial value must be disclosed. (8.1.6.13)

See Table 5-3.

The RTE was given a weighted random distribution, which was not adjusted during the run.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 27

Percentage of Total Mix

The percentage of the total mix for each transaction type must be disclosed.
See Table 5-3.

Table 5-3. Transaction Statistics and Transaction Mix

New Order Value (%)
Home warehouse order lines 99.00
Remote warehouse order lines 1.00
Rolled back transactions 0.98
Average number of items per order 10.00
Payment
Home warehouse payment transactions 85.06
Remote warehouse payment transactions 14.94

Non-Primary Key Access

Payment transactions using C_LAST 60.03

Order-Status transactions using C_LAST 59.89
Delivery

Delivery transactions skipped 0

Transaction Mix

New-Order 44 .87
Payment 43.00
Delivery 4.06
Stock Level 4.03
Order-Status 4.04

Number of Checkpoints

The number of checkpoints in the Measurement Interval, the time in seconds from the start of the Measurement
Interval to the first checkpoint, and the Checkpoint Interval must be disclosed.

Checkpoints were performed during the ramp-up period and during each measured run interval. The first
measurement interval checkpoint started 5 minutes and 3 seconds after the start of the measurement interval. The
four checkpoints in the measured interval are shown in Table 5-4.

Table 5-4. Checkpoint Start Time and Duration

Checkpoint Start Time Duration
1 08:52:03 a.m. 14 minutes 38 seconds
2 09:22:01 a.m. 15 minutes 52 seconds
3 09:51:59 a.m. 16 minutes 49 seconds
4 10:21:57 a.m. 17 minutes 20 seconds

The checkpoint interval was 30 minutes.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

Clause 6: SUT, Driver and Communication Definition Related
Items

Description of RTE

The RTE input parameters, code fragments, functions, etc., used to generate each transaction input field must be
disclosed.

The RTE used was Microsoft BenchCraft 1.1.2 RTE. Benchcraft is a proprietary tool provided by Microsoft and is
not commercially available. The RTE input is listed in Appendix C.

Emulated Components

1t must be demonstrated that the functionality and performance of the components being emulated in the Driver
System are equivalent to that of the priced system. The results of the test described in Clause 6.6.3.4 must be
disclosed.

No components were emulated.

Benchmarked and Targeted System Configuration Diagrams

A complete functional diagram of both the benchmarked configuration and the configuration of the proposed
(target) system must be disclosed. A detailed list of all software and hardware functionality being performed on the
Driver System, and its interface to the SUT must be disclosed (see Clause 6.6.3.6).

The driver RTE generated the transaction input data and transmitted it to the client in HTML format. The driver
RTE received the output from the System under Test, time-stamped it, and forwarded it to the Master RTE for
post-test processing. No other functionality was included on the driver RTE.

il

Detailed diagrams of the benchmarked and priced configurations are provided in the section called “General Items’
at the beginning of this document.

Network Configuration

The network configurations of both the tested services and the proposed (target) services which are being
represented and a thorough explanation of exactly which parts of the proposed configuration are being replaced
with the Driver System must be disclosed (see Clause 6.6.4).

See the measured and priced configuration diagrams (pages 13 and 14) for details about the network configuration.

Network Bandwidth

The bandwidth of the network(s) used in the tested/priced configuration must be disclosed.

The Ethernet used in the LAN complies with the IEEE.802.3 standard. The LANs that connected the driver RTEs to
the clients had a bandwidth of 10Mbps. The LAN that connected the client to the server had a bandwidth of
100Mbps.

Operator Intervention

If the configuration requires operator intervention (see Clause 6.6.6), the mechanism and the frequency of this
intervention must be disclosed.

The configuration did not require any operator intervention to sustain the reported throughput.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 29

Clause 7: Pricing Related Items

Hardware and Software Components

A detailed list of the hardware and software used in the priced system must be reported. Each separately orderable
item must have a vendor part number, description and release/revision level, and either general availability status
or committed delivery date. If package-pricing is used, vendor part number of the package and a description
uniquely identifying each of the components of the package must be disclosed.

Pricing source(s) and effective date(s) must also be reported.

The total 3-year price of the entire configuration must be reported, including: hardware, software, and maintenance
charges. Separate component pricing is recommended. The basis of all discounts used must be disclosed.

A detailed list of all hardware and software, including the 3-year price, is provided in the Executive Summary at the
front of this report. All third-party quotations are included in Appendix E at the end of this document.

Availability Date

The committed delivery date for general availability (availability date) of products used in the price calculations
must be reported. When the priced system includes products with different availability dates, the reported
availability for the priced system must be the date at which all components are committed to be available.

All hardware and software used in this benchmark are currently available.

Measured tpmC

A statement of the measured tpmC, as well as the respective calculations for the 3-year pricing, price/performance
(price/tpmC) and the availability date must be included.

¢ Maximum Qualified Throughput: 18,936.05 tpmC
¢ Price per tpmC: $2.46 per tpmC
¢ Three-year cost of ownership: $46,539

Country-Specific Pricing

Additional Clause 7 related items may be included in the Full Disclosure Report for each country-specific priced
configuration. Country-specific pricing is subject to Clause 7.1.7.

The configuration is priced for the United States of America.

Usage Pricing

For any usage pricing, the sponsor must disclose:
« Usage level at which the component was priced.
« A statement of the company policy allowing such pricing.

The component pricing based on usage is shown below:
« 1 Microsoft Windows Server 2003 Standard Edition
« 1 Microsoft SQL Server 2000 Standard Edition (based on per-processor price)
+ 3-year support for hardware components (except for components for which 10 percent spares are
provided)

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 30

System Pricing

System pricing should include subtotals for the following components: Server Hardware, Server Software, Client
Hardware, Client Software, and Network Components used for terminal connection (see Clause 7.2.2.3).

System pricing must include line item indication where non-sponsoring companies’ brands are used. System pricing
must also include line item indication of third-party pricing.

A detailed list of all hardware and software, including the 3-year price, is provided in the Executive Summary at the
front of this report. All third-party quotations are included in Appendix E at the end of this document.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 31

Clause 9: Audit Related Items

Auditor

The auditor’s name, address, phone number, and a copy of the auditor’s attestation letter indicating compliance
must be included in the Full Disclosure Report.

This implementation of the TPC-C benchmark was audited by Bradley J. Askins of InfoSizing, Inc. The auditor’s
attestation letter is provided in this section.

Availability of the Full Disclosure Report

The Full Disclosure Report must be readily available to the public at a reasonable charge, similar to the charges
for similar documents by the test sponsor. The report must be made available when results are made public. In
order to use the phrase “TPC Benchmark™C,” the Full Disclosure Report must have been submitted to the TPC
Administrator as well as written permission obtained to distribute same.

The TPC Benchmark C Full Disclosure Report is available at www.tpc.org.

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

32

T TRAHSACTION PROCESSIHG

CERTIFIED AUDITOR

Benchmark Sponsor: Kamran Amini
Manager, xSeries Performance
IBM Systems Group
3039 Cornwallis Road
Research Triangle Park, NC 27709

July 9, 2003

I verified the TPC Benchmark™ C performance for the following Client/Server configuration:

Platform: IBM (@server xSeries 235 c¢/s

Operating system: Microsoft Windows Server 2003 Standard Server
Database Manager: Microsoft SQL Server 2000 Standard Edition
Transaction Manager: ~ Microsoft COM+

The results were:

CPU's . NewOrder 90%
M Disk
Speed SHHOL 1558 Response Time tpmC
Server: IBM @server xSeries 235
1 x Xeon DP 2.5 GB Main
43 x 18.2 GB 0.82 Seconds 18,936.05
(3.06GHz) (512KB L2 Cache) 5 <734 GB
Clients: One (1) IBM @server xSeries 225 (Specification for each)
1 x Xeon DP 1 GB Main
(2.4 GHz) (512 KB L2 Cache 1x18.2GB n/a n/a
per processor)

In my opinion, these performance results were produced in compliance with the TPC’s
requirements for the benchmark. The following verification items were given special attention:

» The database records were the proper size

» The database was properly scaled and populated

1373 North Franklin Street « Colorado Springs, CO 80903-2527 - Office: 719/473-7555 « Fax: 719/473-7554

» The required ACID properties were met

» The transactions were correctly implemented

» Input data was generated according to the specified percentages

» The transaction cycle times included the required keying and think times

» The reported response times were correctly measured.

* All 90% response times were under the specified maximums

+ Atleast 90% of all delivery transactions met the 80 Second completion time limit
* The reported measurement interval was 120 minutes (7200 seconds)

* The reported measurement interval was representative of steady state conditions
* Four checkpoints were taken during the reported measurement interval

* The 60 day storage requirement was correctly computed

* The system pricing was verified for major components and maintenance

Additional Audit Notes:
None.
Respectfully Yours,
) ’7 . '.f -'I‘
Frangois Raab, President Bradley J. Askins, Auditor

1373 North Franklin Street « Colorado Springs, CO 80903-2527 « Office: 719/473-7555 « Fax: 719/473-7554

Appendix A: Source Code

client_utils.c

/* client_utils.c
*/

#include <stdio.h>
#include <time.h>
#include <windows.h>
#include <winperf.h>
#include <winsock.h>
#include "client utils.h"

#define Li2Double(x) ((double)((x).HighPart) * 4.294967296E9 +
(double)((x).LowPart))

static LARGE INTEGER pFreq;
static double sFreq;

static int print_thread id = 1;
static int user_id = 0;

static char *user_code ="C";

/*

* get thread id

* A function that returns the thread ID of the current thread
*/

static int get thread_id()

{
return(GetCurrentThreadId());
}
/*
* get prefix
* Format the output prefix for printing:
* It contains the user_id, 'C' or 'T' depending on whether it
* is a terminal or a client and optional a thread identifier
* The prefix is written in the buffer passed in by the caller.
*/

static void get_prefix(char *buffer)

if (print_thread _id) {
int thread_id = get_thread_id();
sprintf(buffer, "%s(%d-%s-%d)%s",

user_id<10?" ":user_id<100?"":"",
user_id,
user_code,
thread _id,
thread_id<107?"":"");
}else {
sprintf(buffer, "%s(%2d-%s)",
user id<10?"":"" user id, user_code);
}
}
/*

* err_printf
* A var-arg function that appends the current time and
* other data to the print request and sends it to stderr
* if it is not a web client, to a file if it is
*/
void err_printf(char *format, ...)
{ . .
time_t cur_timet;
char time_str[30];

char line_prefix[50];
va_list ap;

va_start(ap, format);

cur_timet = time(&cur_timet);
strftime(time_str, 29, "%X", localtime(&cur_timet));

get_prefix(line_prefix);

fprintf(ERROUT, "%s %s - ", line_prefix, time_str);
viprintf(ERROUT, format, ap);
fflush(ERROUT);

va_end(ap);
}

/*
* encina_error_message
*
* Report an encina error message by interpreting it and writing
* it to both the logfile (if any) and to standard error
*/
void encina_error_message(char *msg, unsigned long n)
{
char errorMsg[ENCINA_MAX_STATUS_STRING_SIZE];
encina_StatusToString(n, ENCINA_ MAX_ STATUS STRING_SIZE,
errorMsg);
err_printf("ERROR: %s. Error code = %s (%d 0x%x) \n", msg, errorMsg, n,
n);

}
int get_time_init()

QueryPerformanceFrequency(&pFreq);
sFreq=Li2Double(pFreq);
return 0;

}

int get_local time(time_type *timeP)
{

double cur _t;

LARGE_INTEGER counter;

QueryPerformanceCounter(&counter);
cur_t = Li2Double(counter) / sFreq;
timeP->sec = (long)cur t;
/* timeP->usec = ((long)cur_t - timeP->sec) * 1000000;*/
timeP->usec = (long)((cur_t - timeP->sec) * 1000000);
return 0;

}

/*

* time_diff ms

* Return the difference in miliseconds between two times
*/

int time_diff_ms(struct timeval *t2, struct timeval *t1)

{
intt diff;

t_diff = (t2->tv_usec + 1000000 - t1->tv_usec + 500) / 1000 +
(t2->tv_sec - t1->tv_sec - 1) * 1000;

return(t_diff);
}

/*

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 35

* perfClntDatalnit:
* Initialization for the shared file mapping.
*

* return: pointer to the shared memory space
*
* This routine creates a named mapped memory section that is used
* to communicate the TPCC performance data to the extensible
* counter DLL for NT perfmon.
*/
total_tran_count_t *perfClntDatalnit()
{

HANDLE hMappedObject;

total tran _count t *pClntlnfo = NULL;

TCHAR szMappedObjectName[] =
TEXT("TPCC_CLNT_COUNTER_BLOCK");

/* create named section for the performance data */
hMappedObject = CreateFileMapping((HANDLE)OXxFFFFFFFF,
NULL,
PAGE _READWRITE,
0,
sizeof(total tran_count t),
szMappedObjectName);
if (hMappedObject == NULL) {
err_printf("perfCIntDatalnit: CreateFileMapping failed %x\n",
GetLastError());
pClntInfo = NULL,;
} else {
/* map the section and assign the counter block pointer
* to this section of memory
*/
pClntinfo = (total tran_count_t *) MapViewOfFile(hMappedObject,
FILE_ MAP_ALL_ACCESS,
0,
0,
0);
if (pClntInfo == NULL) {
err_printf("perfCIntDatalnit: MapViewOfFile failed %x\n",
GetLastError());
}
else {
err_printf("perfCIntDatalnit: MapViewOfFile success \n");
}
}

return(pClntInfo);
}

client_utils.h

#ifndef TPCC_CLIENT UTILS H
#define TPCC_CLIENT UTILS H

#include <stdio.h>

#include <time.h>

#include <dce/rpc.h>

#include <dce/dce_error.h>
#include <encina/encina.h>
#include <stdlib.h>

#include <utils/trace.h>
#include <winsock.h>

#include "mon_client.h"
#include "../include/tpcc_type.h"

extern FILE * errtpcc;
extern FILE *logtpcc;
extern int debug;

extern char log_file name[];

extern void logprintf(char *format, ...);

extern void err_printf(char *format, ...);

extern void encina_error_message(char *msg, unsigned long n);
extern int time_diff ms(struct timeval *t2, struct timeval *t1);

typedef struct {
int num;
int errs;
double RTtotal[2]; // 1 for server RT and O for client RT
int RTcount;
} tran_info _t;

/*

* total_tran_count t

x*

* structure that holds the total count of transaction of each type

* as well as the reposne times.

%

*/

typedef struct {
tran_info_t tranf[MAX_TRAN_TYPE + 1];
int errors;
double time;

} total _tran count t;

/* enc_status_t
* structure that holds error information
*/
typedef struct {
int status;
int line;
char file[268];
unsigned long encinaError;
char errorMsg[ENCINA_MAX_ STATUS_STRING_SIZE];
} enc_status_t;

#define FALSE 0
#define TRUE 1

#define DPRINT(args) if (0) err_printf args

#define CHECK_ENVIRON(str,var) if (str == NULL) { fprintf(ERROUT, \
"%s environment variable is not defined.\n",var); }

#define CHK_STATUS(st, val, _errMsg) \
if(st) { \

enc_status.status=val; \
strepy(enc_status.file, FILE); \
enc_status.line=__ LINE ; \
enc_status.encinaError = st; \
if(_errMsg)strepy(enc_status.errorMsg, errMsg); \
if(st!=1) return; \

1

#define UTIL_IDENT(a) a

#if ENCINA_C_ANSI_STRING TOKEN SUPPORT
#define UTIL_STRING(a) #a

#idefine UTIL_CONCAT(a,b) a##b

#else /* ENCINA_C_ANSI_STRING TOKEN_SUPPORT */
#define UTIL_STRING(a) "a"

#define UTIL_CONCAT(a,b) UTIL_IDENT(a)b

#endif /* ENCINA C_ANSI STRING TOKEN SUPPORT */

/* ENCINA_CALL: Make fail-fast calls on the various services. */
#define ENCINA_CALL(proc_name,call) \

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003

36

{ \
unsigned long _status; \
ENCINA CALL RC(proc_name,call, status); \
if (_status) exit program(_status); \

}

#define ENCINA_CALL RC(proc_name,call,rc) \
{ \
char _errorMsg[ENCINA_ MAX STATUS_STRING_SIZE];
DPRINT(("ENCINA_CALL_RC: before call %s\n", proc_name));
\
rc = (call); \
DPRINT(("ENCINA_CALL_RC: after call %s\n", proc_name));
\
if (re) { \
encina_StatusToString(rc, ENCINA_ MAX STATUS_STRING_SIZE,

_errorMsg); \
err_printf("%x \n", rc); \
err_printf("%s \n", errorMsg); \
err_printf("%s \n", proc_name); \

) \
}

void err_printf(char *format, ...);

void encina_error_message(char *msg, unsigned long n);
int get time_init();

int get_local time(time_type *timeP);

int time_diff_ms(struct timeval *t2, struct timeval *t1);

#endif /* TPCC_CLIENT UTILS H */

dlldata.c

[sk sk sk sk ok ok ok kR ksl sk sk sk sk sk sk sk sk skskskskskokokokokokokokk ko kol skl sk sk skoskskokokokokok ok okokok

DllData file -- generated by MIDL compiler
DO NOT ALTER THIS FILE
This file is regenerated by MIDL on every IDL file compile.

To completely reconstruct this file, delete it and rerun MIDL
on all the IDL files in this DLL, specifying this file for the
/dlldata command line option

sk sk sk sk sk stk skok kot skttt stk ok kol skl sk sk sk skokok kst sk ok okl skl skl ko ok kR R Rk |

#include <rpcproxy.h>

#ifdef _ cplusplus
extern "C" {
#endif

EXTERN_PROXY_FILE(tpcc_com_ps)

PROXYFILE LIST START
/* Start of list */
REFERENCE PROXY_ FILE(tpcc_com_ps),
/* End of list */
PROXYFILE LIST END

DLLDATA_ROUTINES(aProxyFileList, GET DLL_CLSID)

#ifdef _ cplusplus
} /*extern "C" */
#endif

/* end of generated dlldata file */

error.h

/* FILE: ERROR.H

* Microsoft TPC-C Kit Ver.
4.20.000

* Copyright Microsoft, 1999
* All Rights Reserved

*

* Version 4.10.000 audited by
Richard Gimarc, Performance Metrics, 3/17/99

x*

* PURPOSE: Header file for error exception classes.
3

* Change history:

* 4.20.000 - updated rev number to match kit

* 4.21.000 - fixed bug: ~CBaseErr needed to be declared
virtual

*/

#pragma once

#ifndef INC_STRING
#include <string.h>
#endif

const int m_szMsg_size = 512;
const int m_szApp_size = 64;
const int m_szLoc_size = 64;

/lerror message structure used in ErrorText routines
typedef struct SERRORMSG

{
int iError;
/lerror id of message
char szMsg[256]; //message to

sent to browser
} SERRORMSG;

—

#define ERR_FATAL LEVEL
#define ERR_WARNING LEVEL 2
#define ERR_INFORMATION LEVEL 3

#define ERR_TYPE LOGIC

-1 //logic error in program; internal error
#define ERR_SUCCESS
0 //success (a non-error error)
#define ERR_BAD_ITEM ID
1 /lexpected abort record in txnRecord
#define ERR_TYPE_DELIVERY_POST
2 /lexpected delivery post failed
#define ERR _TYPE WEBDLL
3 /ltpcc web generated error
#define ERR_TYPE_SQL
4 //sql server generated error
#define ERR_TYPE DBLIB
5 //dblib generated error
#define ERR_TYPE_ODBC
6 //odbc generated error

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 37

#define ERR_TYPE SOCKET

7
only

//error on communication socket client rte

#define ERR_TYPE _DEADLOCK

8

//dblib and odbc only deadlock condition

#define ERR_TYPE_COM

9

//error from COM call

#define ERR_TYPE_TUXEDO

10

/tuxedo error

#define ERR_TYPE_OS

11 //operating system error

#define ERR_TYPE_MEMORY

12

//memory allocation error

#define ERR_TYPE_TPCC_ODBC

13

/lerror from tpce odbe txn module

#define ERR_TYPE_TPCC_DBLIB

14

/[error from tpce dblib txn module

#define ERR_TYPE DELISRV

15

//delivery server error

#define ERR_TYPE_TXNLOG

16

//txn log error

#define ERR_TYPE BCCONN

17

//Benchcraft connection class

#define ERR_TYPE_TPCC_CONN

18

//Benchcraft connection class

#define ERR_TYPE _ENCINA

19

//Encina error

#define ERR_TYPE COMPONENT

20

/[error from COM component

#define ERR_TYPE_RTE

21

//Benchcraft rte

#define ERR_TYPE_AUTOMATION

22

class CBaseErr

//Benchcraft automation errors

{
public:
char *m_szApp;
char *m_szMsg;
char *m_szLoc;// code location where the error occurred
int m_idMsg;
CBaseErr(void)
{
m_idMsg =0;
m_szMsg =new char[m_szMsg_size];
m_szApp =new char[m_szApp_size];
m_szLoc =NULL;
m_szMsg[0] =0;
m_szApp[0] =0;

GetModuleFileName(GetModuleHandle(NULL),

m_szApp, m_szApp_size);
}

virtual ~CBaseErr(void)

{
if (m_szMsg)
delete [] m_szMsg;
if (m_szApp)
delete [] m_szApp;
if (m_szLoc)
delete [] m_szLoc;
}5
CBaseErr(int idMsg)

{
m_idMsg =1idMsg;
m_szApp =new char[m_szApp_size];
m_szMsg =new char[m_szMsg_size];
m_szLoc =NULL;

GetModuleFileName(GetModuleHandle(NULL),
m_szApp, m_szApp_size);

LoadString(GetModuleHandle(NULL), idMsg,
m_szMsg, m_szMsg_size);

CBaseErr(LPCTSTR szMsg)

{
m_idMsg =0;
m_szApp =new char[m_szApp_size];
m_szMsg =new char[m_szMsg_size];
m_szLoc =NULL;

GetModuleFileName(GetModuleHandle(NULL),
m_szApp, m_szApp_size);
strepy(m_szMsg, szMsg);

}
void SetError(char *szMsg, LPCTSTR szLocation)
{
if (szMsg !=NULL)
strepy(m_szMsg, szMsg);
else
m_szMsg[0] = 0;
if (szLocation != NULL)
{
delete [] m_szLoc;
m_szLoc = new char[strlen(szLocation)+1];
strepy(m_szLoc, szLocation);
}
else
{
delete [] m_szLoc;
m_szLoc = NULL;
}
}
virtual void Draw(HWND hwnd, LPCTSTR szStr = NULL)
{
int IR
char szTmp[512];
if (szStr)

j = wsprintf(szTmp, "%s\n",szStr);
if (m_szLoc)
j += wsprintf(szZTmp+j,
"Location=%s\n",m_szLoc);
if (m_szMsg)
j += wsprintf(szZTmp+j, "%s\n", m_szMsg);

::MessageBox(hwnd, szTmp, m_szApp, MB_OK);
}

char *GetApp(void) { return m_szApp; }
char *GetMsg(void) { return m_szMsg; }
char *GetLocation(void) { return m_szLoc; }

virtual int ErrorType() = 0;
kind of error that occurred

virtual int ErrorNum() = 0;
specific to the error type

// a value which distinguishes the

// an error value

© IBM Corporation TPC Benchmark C Full Disclosure Report - July 2003 38

virtual char *ErrorText() = 0;
representation of the error

// a string (i.e., human readable)

IS

class CSocketErr : public CBaseErr
{

public:

enum Action