
TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 1 of 287

TPC BENCHMARK Ê E

Standard Specification

Version 1.14.0

April 201 5

Transaction Processing Performance Council (TPC)

www.tpc.org

info@tpc.org

© 2010 Transaction Processing Performance Council

All Rights Reserved

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 2 of 287

Legal Notice

The TPC reserves all right, title, and interest to th is document and associated source code as provided
under U.S. and international laws, including without limitation all patent and trademark rights therein.

Permission to copy without fee all or part of this document is granted provided that the TPC copyright
notice, the title of the publication, and its date appear, and notice is given that copying is by permission
of the Transaction Processing Performance Council. To copy otherwise requires specific permission.

No War ranty

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION CONTAINED HEREIN

IS PROVIDED òAS ISó AND WITH ALL FAULTS, AND THE AUTHORS AND DEVELOPERS OF THE WORK

HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR

STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, DUTIES OR

CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY OR

COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF

LACK OF NEGLIGENCE. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT,
QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON -INFRINGEMENT WITH REGARD TO

THE WORK.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO ANY OTHER PARTY FOR

ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE COST OF PROCURING SUBSTITUTE GOODS OR

SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE,
ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THE WORK, WHETHER

OR NOT SUCH AUTHOR OR DEVELOPER HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH

DAMAGES.

Trademarks

TPC Benchmark, TPC-E, and tpsE are trademarks of the Transaction Processing Performance Council.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 3 of 287

Acknowledgments

The TPC acknowledges the work and contributions of the TPC-E subcommittee member companies:
AMD, Dell, Fujitsu -Siemens, HP, IBM, Ingres, Intel, Microsoft, NEC, Oracle, Sun, Sybase, and Unisys.
In additi on, the TPC acknowledges the work of Trish Hogan as specification editor and the work and
contributions of InfoSizing.

TPC Membership
(as of April 201 5)

Full Members

Associate Members

Document Revision History

Date Version Description

05-Dec-2006 1.0.0 Mail Ballot Draft

February
2007

1.0.0 Approved Standard Specificati on Officially approved.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 4 of 287

27-Mar-2007 1.1.0

Editorial Change Number 1, Clause 1.2, fourth paragraph remove ôsõ from òturnsó.
(Motion 4)

Editorial Change Number 2, Remove the last two sentences from the Scaling Tables
section. (Motion 5)

Editorial Change Num ber 3, change wording from òcurrent revision of version 1 of the
TPC Pricing Specificationó to òeffective version of the TPC Pricing Specificationó. (Motion
6)

Editorial Change Number 4, Update pseudo -code in Trade-Order frame 3 to include the
hs_qty no rows returned situation. (Motion 7)

03-Apr -2007 1.1.0

Editorial Change Number 5, Clarify Market -Watch pseudo-code. (Motion 11)

Editorial Change Number 6, editorial fixes for spaces and underscores and correctly
numbering things in Data -Maintenance, also Database Footprint corrections. (Motion 12)

10-Apr -2007 1.1.0 Editorial Change Number 7 clarifies the definition of òApplicationó. (Motion 14)

19-Apr -2007 1.1.0 Officially approved.

26-Apr -2007 1.2.0
Editorial Change Number 8 clarifies clause 2.2.3.4 which is about whether nulls are
allowed in columns. (Motion 24)

02-May-2007 1.2.0

Editorial Change Number 9 clarifies clause 3.2.1.1. A Frame may not use knowledge of
EGenõs data generation methods. (Motion 27)

Editorial Change Number 10, add òProfileó as a defined term and make changes to use
the new defined term. (Motion 28)

Editorial Change Number 11, in clause 3.3 change òprofilesó to òcharacteristicsó to avoid
ambiguity with the defined term. (Motion 29)

Editorial Change Number 12, in clause 1.1, deletes clause 3.2.1.3 text from the definition
of a Database Footprint. (Motion 30)

Editorial Change Number 13, clarify step 4 in clause 6.4.3.2. (Motion 31)

Editorial Change Number 14, in clause 2.2.5.5 removes the text in parenthesis from the
description of the SE_AMT column. (Motion 34)

Editorial Change Number 15, add text òduring a Test Runó after òby the databaseó in
clauses 2.2.3.1, 2.2.3.2, 2.2.3.3. (Motion 35)

Editorial Change Number 16, change the second sentence of clause 2.3.3.3. (Motion 36)

Editorial C hange Number 17, in clause 10.2.2.15 correct the reference to clause 2.3.6 not
clause 2.3.8. (Motion 37)

Editorial Change Number 18, add a comment to clause 10.2.2.20 saying no check is
required for clause 2.4.2. (Motion 38)

Editorial Change Number 19, in clause 3.3.2.4 replace òcustomeró with òcustomer
accountó. (Motion 39)

Editorial Change Number 20 clarifies the wording in clause 10.2.5.11. (Motion 41)

Editorial Change Number 21 adds the wording òunless otherwise directed by an auditoró
to clause 6.6.2.3. This wording allows sponsors to run database check code for the auditor
and allows the sponsor to run isolation tests. (Motion 47)

08-May-2007 1.2.0
Editorial Change Number 22, clarification of the wording used to describe some of the
Frames in Trade-Lookup and Trade-Update. (Motion 49)

23-May-2007 1.2.0 Editorial Change Number 23, Boolean and LIFO clarifications (Motion 55)

30-May-2007 1.2.0

Editorial Change Number 24, roll_it_back changes (Motion 57)

Editorial Change Number 25, typos and growth table fix (Motion 58)

Editorial Change Number 26, isolation test changes (Motion 59)

Editorial Change Number 27, clarification of the term òtableó (Motion 60)

04-Jun-2007 1.2.0

Editorial Change Number 28, changes to clauses 4.4.1.1 and 10.2.4.11 wording (Motion
63)

Editorial Change Number 29, new clause 2.3.11 for User-Defined Objects (Motion 64)

06-Jun-2007 1.2.0

Editorial Change Number 30 clarifies when consistency tests need to be run and what
tests should be run. (Motion 66)

Editorial Change Number 31, change title of clause 6.4 and 6.4.2, expand opening
paragraph of clause 6.4.2, remove constant TradeLookupFrame4MaxRows from the table

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 5 of 287

in clause 6.4.2 add a comment 2 to clause 3.2.1.1. (Motion 67)

Editorial Change Number 32, change the isolation tests in clause 7.4.2 to use transaction
parameter names instead of table column names. (Motion 68)

Editorial Change Number 33, remove hard -coded òCMPTó from frames 2 and 3 in Trade-
Lookup and Trade -Update, make the necessary Database-Footprint changes. (Motion 69)

12-Jun-2007 1.2.0

Editorial Change Number 34, Include the contents of the TRADE_TYPE and
STATUS_TYPE tables in the specification. (Motion 72)

Editorial Change Number 36, move clause 9.4.4.1 to clause 9.4.5.5. (Motion 74)

Editorial Change Number 37, accept the changes to the Numerical Quantities reporting
requirements as shown in DataMaintRespTimeTrish.doc (Motion 75)

Editorial Change Number 40, clarify the description of Market -Feed Frame 1 in clause
3.3.3.3 (Motion 79)

Editorial Change Number 41, add select òfirst 3 rowsó to the pseudo-code for Trade-
Lookup and Trade -Update frames when we select from the TRADE_HISTORY table.
(Motion 80)

Editorial Change Number 42, change the Market-Feed Frame 1 pseudo-code to use
distinct variable names (Motion 82)

Editoria l Change Number 44, add a comment to clause 6.6.5.3 to clarify the checkpoint
requirements (Motion 85).

Editorial Change Number 45, apply several editorial changes from the auditors (Motion
86)

Editorial Change Number 46, change table to TPC-E table in clause 2.3.4 (Motion 87)

Editorial Change Number 47, change table to TPC-E table in clause 2.3.5 (Motion 88)

Editorial Change Number 48, move clause 6.4.2 limit constants table to clause 3.2.1.1
(Motion 89)

15-Jun-2007 1.3.0

Updated TPC Membership table with BEA and EnterpriseDB

Editorial Change Number 35, add clause 6.2.5 Driver Reporting Requirements. Move
clause 9.3.4.1 to clause 9.3.6.1. Change the reference in the new clause 9.3.6.1 to reference
the new clause 6.2.5 instead of clause 4.1.3. (Motion 73)

Editorial Change Number 38, add definition for òDatabase Metadataó to clause 1.1
(Motion 77).

Editorial Change Number 39, clean up the reference to òMetadataó and use the newly
defined term òDatabase Metadataó (Motion 78).

Editorial Change Number 43 , change Market-Watch Frame 1 pseudo-code. Remove the
last òelseó òrollback transactionó. Move the òcommit transactionó outside of the òif
(status != bad_input_data)ó check so that the commit is unconditional. (Motion 84)

28-Aug -2007 1.3.0

Change Number 49, clarify clause 6.6.2.1 so that measured runs do not have to be on a
freshly restored database (Motion 99).

Another Change Number 49, add wording to clause 6.7.4.2 to define the level of precision
required for the input standard deviation (Motion 101).

Change Number 51 - fix various typos (Motion 105).

Change Number 52 and part of Change Number 50, add wording to appendix A.6.4 to
document the #define flags to use to change the date/time format (Motion 107 and
Motion 103).

Change Number 53 - change Trade-Result to return the load unit number (Motion 108).

Change Number 54 ð clarify clause 10.2.8.2 and clause 10.2.8.3 so that the auditor just has
to check that the files that are expected are in the Supporting Files but does not have to
verify every file is correct (Motion 109).

Change Number 55 ð change bullet 3 of Clause 7.5.6.7 to say òone or moreó instead of
òoneó (Motion 110).

Change Number 56 ð in clause 10.2.2.14 change òtableó to òTPC-E tableó to match clause
2.3.5 (Motion 111).

Change Number 57 ð change comment 2 of Clause 7.5.5.2 (Motion 112).

Change Number 58 ð replace clause 10.2.5.14 and use Sustainable performance rather
than Steady state (Motion 114).

Change Number 59 ð delete the last sentence of Clause 10.2.5.2. Change the reference in
Clause 10.2.5.2 to Clause 6.6.2.2. Change the reference in Clause 10.2.5.3 to Clause 6.6.1.1
(Motion 115).

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 6 of 287

Change Number 60 ð change the definition of Dispatch Time (Motion 118).

Change Number 61 ð clarify Clause 6.6.2.3 wording, renumber Clause 10 and clarify what
was clause 10.2.5.13 (Motion 120)

Change Number 62 ð remove the tables listed in parenthesis from Clause 6.6.6.2 (Motion
121).

Change Number 63 ð change comment 2 of Clause 8.2.1 (Motion 122).

Change Number 64 ð replace clause 7.5.5.4 with new Redundancy Level wording (Motion
124).

Change Number 65 ð delete Clause 9.3.7.3 and modify Clause 9.3.7.2 (Motion 125).

Change Number 66 ð correct the reference in Clause 10.2.5.4 to point to Clause 6.3
(Motion 126).

Change Number 67 ð change the wording of Clause 10.2.5.19 (Motion 127).

Change Number 68 ð delete Clause 10.2.4.8 (Motion 129).

Change Number 69 ð change the definition of the Boolean data-type (Motion 130).

Change Number 70 ð in Clause 7.5 replace the word òdeemedó with the word òdefinedó
(Motion 131).

31-Au g-2007 1.3.0

Change Number 71 ð fix the style of Clause 7.4.2.4 step 7 (Motion 134).

Change Number 72 ð part 1 of clarifying field/attribute/column (Motion 135).

Change Number 73 ð change diagrams to make them more readable on a black and white
print out (Motion 136).

Change Number 74 ð clarify CE Partitioning (Motion 137).

05-Sep-2007 1.3.0
Change Number 75 ð clarify isolation test descriptions (Motion 140).

Change Number 76 ð clarify old clause 10.2.5.15 (now clause 10.6.14) (motion 141).

17-Sep-2007 1.4.0

Changed memberõs list to include Exasol.

Change Number 77 ð part 2 of clarifying field/attribute/column (Motion 148).

Change Number 78 ð drop third bullet in clause 6.6.4.2 (Motion 160)

25-Sep-2007 1.4.0 Change Number 79 ð clarify Referential Integrit y requirements (Motion 166).

02-Oct-2007 1.4.0 Change Number 80 ð clarify the term connector in clause 4.4.1.3 (Motion 170).

17-Oct-2007 1.4.0
Change Number 81 ð in clause 8.2, clarify what storage may be used to meet the 60-Day
space requirements (Motion 173).

07-Nov -2007 1.4.0
Editorial cleanup of headings to be consistent. Added the word òTransactionó to the
headings in Clauses 3.3.2.2 and 3.3.3.2.

14-Nov -2007 1.4.0
Change Number 82 ð clarify 5% or 8-hour growth rate wording by adding a comment to
the Fixed Space definition in clause 6.6.6.2 (Motion 181).

27-Nov -2007 1.4.0
Change Number 83 ð change appendix A.6.4 to include #define for Booleans (Motion
184).

03-Dec-2007 1.4.0

Change Number 84 ð Editorial change to 10.2.14 (Motion 186).

Change Number 85 ð Clarify third sentence of Clause 2.6.1.1 (Motion 188).

Change Number 86 ð Clarify the definition of Growing Space (Motion 189).

Change Number 87 ð Add Clause 9.3.5.5 to add reporting requirements for the building
of EGen Objects (Motion 190).

13-Dec-2007 1.5.0
Changed memberõs list to include ParAccel and to change NCR-Teradata to just Teradata.

Change Number 88 ð changes to Business Recovery Time (Motion 191).

13-Feb-2008 1.5.0

Fixed cross references in Application Recovery Time and Business Recovery Time
definition s.

Change Number 89 ð Add a new clause 5.7.3 to specify what the DBMS should do if
EGenLoader generates an empty string (Motion 206).

Change Number 90 ð Clarify step 8 in clause 7.5.6.8 (Motion 212).

27-Feb-2008 1.5.0

Change Number 91 ð add comment 3 to clause 3.1.2.3 saying that select for update is
allowed when the Database Footprint says a Reference is required (Motion 215)

Change Number 92 ð Replace Clause 3.2.1.6 with a clearer description of what it means to
be functionally equivale nt to the pseudo-code (Motion 216)

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 7 of 287

Change Number 93 ð clarify Clause 6.3.3 ð Data-Maintenance must run every 58 to 63
seconds (Motion 217)

14-Mar-2008 1.5.1

Removed BEA and EnterpriseDB from membership list.

Change Number 94 ð change òaccountó to òacct_idó in the pseudo-code for Trade-Order
Frame 3 (Motion 228)

18-Mar-2008 1.5.1 Change Number 95 ð re-order clause 10 (Motion 236)

15-Apr -2008 1.5.1
Change Number 97 ð In clause 2.3.9 change the cross reference from 6.6.6.1 to 6.6.6.2
(Motion 240).

19-May-2008 1.6.0

Change Number 96 ð Add status checking to EGenTxnHarness pseudo-code (Motion
237).

Change Number 98 ð Clarify clause 8.2.1 (Motion 241)

Change Number 99 ð Change clause 1.1 60-Day Period definition by replacing òindicesó
with òUser-Defined Objectsó (Motion 242)

Change Number 100 ð Change clause 2.3.9 comment by replacing òassociated objectsó
with òassociated User-Defined Objectsó (Motion 243)

Change Number 101 ð Change clause 8.2.1 replace òindicesó with òUser-Defined Objectsó
(Motion 244)

Change Number 102 ð Change clause 9.3.2.1 replace òindicesó with òUser-Defined
Objectsó (Motion 245)

Change Number 103 ð Change clause 2.2.4.4 replace òindicesó with òreferencesó and
òindexó with òreferenceó (Motion 246)

Change Number 104 ð Add sentence to clause 4.4.1.6 (Motion 253)

12-Jun-2008 1.6.0

Added Fusion -IO, Greenplum, Kickfire and Vertica to TPC members table.

Fixed some errors in Change Number 96 ð Add status checking to EGenTxnHarness
pseudo-code (Motion 237).

Change Number 106 - In Clause 6.5.2.1 added parenthesis around sTn ð eTn-1 (Motion
266).

17-Jun-2008 1.6.0
Change Number 105 ð change to Change Number 96 which added status checking, back
out the òif (list_len == 0) then status = +111ó from Broker -Volume (Motion 265).

31-Jul-2008 1.6.0

Change Number 107 ð Change C_F_NAME and AP_F_NAME from CHAR(30) to
CHAR(20). Change C_L_NAME and AP_L_NAME form CHAR(30) to CHAR(25).
Change CO_CEO from CHAR(100) to CHAR(46). Change T_EXEC_NAME from
CHAR(64) to CHAR(46). Change B_NAME from CHAR(100) to CHAR(49) .

13-Aug -2008 1.6.0

Editorial changes T_EXEC_NAME from CHAR(46) to CHAR(49) because Trade-Update
Frame 1 can add a middle initial to it. Made the corresponding change to ex_name
char(64) to char(49) in Trade-Update Frame 1 pseudo-code. Updated diagram A.b in
section A.13 moved the yellow and purple striped line that goes from CMEESUTInterface
to cyan DoTxn to go to purple DoTxn instead.

11-Sep-2008 1.6.0

Change Number 108 ð move òmin_day_lenó before òmax_day_lenó in table 3.2.1.2
(Motion 272).

Change Number 109 ð Combine the first two lines of clause 3.2.1.8 (Motion 273)

Change Number 110 ð Clarify the last two lines of clause 3.2.1.8 (Motion 274)

Change Number 113 ð In Market -Feed Frame 1 Parameters change the description of
òstatusó to use the word òFrameó instead of the word òTransactionó (Motion 278)

Change Number 116 ð In Trade-Lookup Frame 4 pseudo-code change status = -641 to
status = +641 (Motion 282)

Change Number 117 ð Add ò, DMó to the first line of clause 10.6.2.1 (Motion 283)

Change Number 118 ð In clause 3.3.11 change 10c to 10C (Motion 284)

Change Number 119 ð Change òLOBó to òBLOBó and add the definition BLOB_REF
(Motion 287)

19-Nov -2008 1.7.0

Change Number 111 ð Add table to clause 3.2.1.8 listing EGen warnings and where they
happen in the code (Motion 275)

Change Number 112 ð Change comment in Customer-Position Frame 2 pseudo-code in
Clause 3.3.2.4 to read òShould return 10 to 30 rowsó (Motion 277)

Change Number 114 ð Remove the max_send_len constant from clause 3.2.1.2 and the

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 8 of 287

Market -Feed pseudo code (Motion 279)

Change Number 115 ð Change the Market-Feed pseudo-code in Clause 3.3.3.3 to reflect
logic changes (Motion 280)

Change Number 120 ð Add òand outputsó to 1st and 3rd sentences of clause 9.4.2.1
(Motion 291)

Change Number 121 ð Update the table in clause 9.3.9.1 to move the entries listed in
Clause 4 to Clause 5 to be consistent with clause 9.4.5.5. Retain the entry for Clause 4
adding a notation that no files are required (Motion 302)

Change Number 122 ð Modify the 3 -second interval to a 30-second interval in Clause
6.4.2.2 (Motions 312 and 316)

11-Jun-2009 1.8.0

Change Number 124 ð Remove òstatus=+412 from Market-Watch pseudo-code in Clause
3.3.4.3

Change Number 125 ð Updated table in Clause 3.2.1.8 to include additional warnings

Change Number 126 ð Modified Clause 5.3.1 to reflect TPC policies change

Change Number 127 ð Modified Clause 8.2.1 Comment 1 to include òsolid-state storageó
to the list of on-line storage examples

Change Number 129 ð Modified Clause 7.5 to rework durabilit y definitions and
procedures

Change Number 130 ð Corrected typos in Clause 7.5.2, 7.5.3.2, and 7.5.4. Removed
redundant wording in Clause 7.5.5 and 7.5.6.1. Modified Clause 6.7.2 wording to
expand description of the graph requirements. Modified Clause 7 .5.5.6. Modified
Clause 7.5.6.7 for consistency of wording. Modified Clause 7.5.7 to clarify steps required
for durability testing. Modified Clause 7.5.8.3 to add a line to the graph at 95% of the
reported throughput. Modified Clause 7.6.7.2 for wordin g consistency.

Change Number 131 ð Modified Clause 3.2.1.8 and 3.3.7.5 to remove the +734 status
check.

17-Sep-2009 1.9.0

Change Number 135 ð Added bullet to Clause 8.1 to address heterogeneous storage
devices

Change Number 136 ð Modified Clause 8.1 to clarify the usage of Free Space

11-Feb-2010 1.10.0

Change Number 137 ð Added òFree Space and/oró to the second bullet of Clause 8.1.

Change Number 138 ð Changed ò8 hours of executionó to òBusiness Dayó in the second
bullet of Clause 8.1.

Change Number 139 ð Changed both occurrences of òDigitsó with òdecimal placesó in
Clause 6.3.2.

Change Number 140 ð Corrected various typos and editorial issues.

Change Number 141 ð Corrected various typos and editorial issues.

Change Number 143 ð Inserted a new Clause 6.6.6.2 for initial database size.

Change Number 144 ð Moved the computation of 60 -day space (Clause 8.2.2) to Clause
6.6.6.6.

Change Number 145 ð Removed the term òNetworkó from Clause 8.1.

Change Number 146 ð Added definition of Measured Configuration .

Change Number 147 ð Moved Clause 8.2.1 to a new Clause 6.6.7.

Change Number 148 ð Added wording to Clauses 0.1.1, 6.7.3, 9.1, and 10.1.3 to support
TPC-Energy.

Change Number 150 ð Modified TPC -Energy wording in Clause 0.1.1.

Change Number 151 ð Removed comment 1 and 2 from 6.6.6.6.

Change Number 152 ð Removed the second sentence of Clause 6.6.6.6; Deleted
Comment 1 from Clause 6.6.7; Renamed òComment 2ó to òCommentó in Clause 6.6.7;
Removed the parenthetical statement in Clause 8.1; Used the defined term òOn-Lineó in
Clauses 6.6.7 and 8.1; Added the definition of On-Line as Clause 8.2.1; Modified Clause
8.2.2.

Change Number 153 ð Removed bullets 2 and 3 from Clause 8.1; added new bullet 2 to
Clause 8.1.

22-Apr -2010 1.11.0

Revised TPC membership list

Change Number 123 ð ð Moved status checks from Market-Feed from pseudo-code to
the harness; updated the status check for Last_Trade updates, added a frame output for
the number of rows updated.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 9 of 287

Change Number 128 - Moved status checks for +641, -711, -721, -811, and -911 from the
pseudo-code to the harness and added frame/transaction output for the number of rows
found.

Change Number 132 ð Changed the cust_assets variable name to acct_assets to more
accurately reflect what is being computed in Clause 3.3.7.5.

Change Number 142 ð Reconciled harness pseudo-code with actual harness code
implementation.

Change Number 149 ð Removed the status output parameter from each frame.

Change Number 159 ð Replaced TAX_RATE with TAXRATE in Clause 3.3.8.2; Removed
the empty bullet in Cl ause 8.1; Replaced òneed beó with òmay beó in Clause 8.2.4.

25-Jun-2010 1.12.0
Change Number 160 ð Modified Clause 7.6 to rework Data Accessibility definitions and
procedures (Motion 451)

24-Feb-2014 1.13.0

Revised TPC membership list

Change Number 161 ð Add Reported Metrics section to Clause 7.6. Move the text from
7.5.8.2 to this new section and strike Clause 7.5.8.2

Change Number 162 - Updated Clauses 3.3.7.5 and 3.3.10.3 to refine status checks and
ensure that EGen and the specification are consistent

Change Number 163 ð Added wording for numeric precision, rounding, and reporting
requirements to Clauses 6.6.8.4, 6.7.1.1, 6.7.1.2, and 6.7.1.3

Change Number 164 ð Durability and Data Accessibility editorial changes

Change Number 165 ð Modified the def inition of Vulnerable Storage Component and
the associated example

Change Number 166 ð Added Clause 7.6.3.6; modified Clause 9.3.7.2; added 10.7.5.4 to
define requirements for combinations of durable media technologies

Change Number 167 ð Removed last sentence from Clause 6.6.8.4; Update Clause 9.3.6.2
to read òThe Reported Throughput must be reported in the Report (see Clause 6.7.1.2).ó
(Motion 481)

Change Number 168 ð Remove the entry for MeasuredThroughput in Appendix C.2.4.
(Motion 482)

Change Number 169 ð Removed Clause 6.7.1.3; update Clause 6.7.1.1 to remove the
reference to Clause 6.7.1.3; Updated the definition of Reported Throughput to remove
the reference to Clause 6.7.1.3; Changed the reference in 10.6.6.2 to be 6.7.1.2 rather than
6.7.1. (Motion 483)

Change Number 170 ð Replaced òone minute average tpsEó in Clause 6.7.2 with òTrade-
Results per second averaged over one minuteó; Removed òone-minute average
throughput in tpsE (computed as theó and the trailing parenthess from the 3rd sentence
in Clause 6.7.2; Changed the caption of Figure 6.f to read òExample of Test Run Graphó;
Changed the y-axis label of Figure 6.f to read òTrade-Result Transactions per secondó
(Motion 484)

Change Number 171 ð Replaced òactual tpsEó with òMeasured Throughputó in Clause
6.7.4.2. (Motion 485)

Change Number 172 ð Modified second paragraph of Clause 6.5.2.3: added òin order to
meet the requirements of Clause 6.7.1ó to the first sentence; removed the second
sentence. (Motion 487)

Change Number 173 ð Replaced all occurrences of òtpsEó with òcompleted Trade-
Results per secondó in Clause 7.5.6.7. (Motion 488)

Change Number 174 ð Replaced òone-minute average tpsEó with òTrade-Results per
second averaged over one-minuteó in Clauses 7.5.8.2 and 7.6.4.2. Removed òthe tpsEó
from the second bullet in Clauses 7.5.8.2 and 7.6.4.2. (Motion 489)

Change Number 175 ð Replaced òreported tpsEó with òReported Throughputó in Clause
6.6.7. (Motion 490)

Change Number 176 ð Modif ied status checks in Clause 3.3.6.6; Modified status checks
in Clause 3.3.10.4 and 3.3.10.5; Updated warnings table in Clause 3.2.1.8. (Motion 495)

Change Number 177 ð Modified Clauses 7.6.3.6 and 7.6.4.1 to clarify tested components
for the Data Accessibility tests. (Motion 497)

Change Number 178 ð Corrected subscript notation in Market Feed pseudo -code in
Clause 3.3.3. (Motion 521)

Change Number 179 ð Removed non-existant EGen structure references from Clauses

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 10 of 287

3.3.2.1, 3.3.7.1, 3.3.8.1, 3.3.11.1, and 3.3.12.1. (Motion 524)

Change Number 180 ð Modified Clause 4.4.1.6 to change clause reference. (Motion 525)

Change Number 181 ð Modified description for cust_id in parameters table of Clause
3.3.7.5. (Motion 528)

Change Number 182 ð Added Clause 7.5.5.2 for prohibiting restore/roll forward
recovery and updated subsequent clause numbers. (Motion 529)

Change Number 183 ð Modified formatting in Clause 7.6.2 to properly show defined
terms. (Motion 530)

Change Number 184 ð Removed the last sentence of Clause 7.5.3.1. (Motion 541)

Change Number 185 ð Updated Appendix A Clau ses A.1, A.2.1, A.3.1, A.5.1, A.13 1a,
and A.13 2a to reflect the code changes in EGen 1.13.

Change Number 186 ð Updated Appendix A Clause 14 for CInputFiles ->
DataFileManager changes.

Change Number 187 ð Updated TPC Membership chart

Change Number 188 ð Added comment to Clause 7.5.5.3 to address reactive actions
within the SUT resulting from Instantaneous Failures.

23-Apr -2015 1.14.0

Change Number 189 ð Editorial change to Clause 3.1.2.3 to fix formatting problems with
bullets

Change Number 190 ð Editoria l change to Database Footprint table in Clauses 3.1.2.3,
3.3.4.2, 3.3.5.2, 3.3.7.2, 3.3.10.2, and 3.3.12.2 to make òTransaction Controló row
formatting consistent

Change Number 191 ð Editorial change to Clause 3.3.11 to correct missing text when
linking to the data_maintenance bookmark

Change Number 192 ð Modify TPC Membership to reflect new members and logos

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 11 of 287

Typographic Conventions

The following typographic conventions are used in this specification:

Convention Description

Bold Bold type is used to highlight terms that are defined in this document

Italics
Italics type is used to highlight a variable that indicat es some quantity whose value can be
assigned in one place and referenced in many other places.

UPPERCASE
Uppercase letters indicate database schema object names such as table and column names. In
addition, most acronyms are in uppercase.

Diagram Col or-Coding Conventions

Concept

Customer Light Green with down diagonal hashing

Broker Pale Blue with up diagonal hashing

Market Rose with horizontal hashing

Implementation

TPC Provided Code Turquoise Italics

Sponsor Provided Code Lavender Underline

Commercially Available Product Light Yellow

Table of Contents

Clause 0 -- Preamble ... 18

0.1 Introduction ... 18
0.1.1 Goal of the TPC-E Benchmark ... 18
0.1.2 Restrictions and Limitations .. 19

0.2 General Implementation Guidelines .. 19

0.3 General Measurement Guidelines ... 20

Clause 1 -- Benchmark Overview .. 21

1.1 Definitions ... 21

1.2 Business and Application Environment ... 43

1.3 Transaction Summary .. 44
1.3.1 Broker-Volume ... 44
1.3.2 Customer-Position ... 44
1.3.3 Market-Feed .. 44
1.3.4 Market-Watch ... 45
1.3.5 Security-Detail .. 45
1.3.6 Trade-Lookup .. 45
1.3.7 Trade-Order ... 45
1.3.8 Trade-Result .. 45
1.3.9 Trade-Status .. 45
1.3.10 Trade-Update .. 45
1.3.11 Data-Maintenance ... 46
1.3.12 Trade-Cleanup ... 46

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 12 of 287

1.4 Model Description ... 46
1.4.1 Entity Relationships .. 46
1.4.2 Differences between Customer Tiers .. 46
1.4.3 Customer Partitioning ... 46
1.4.4 Trade Types ... 47
1.4.5 Effects of Trading on Holdings ... 47

Clause 2 -- Database Design, Scaling & Population ... 48

2.1 Introduction ... 48
2.1.1 Definitions ... 48

2.2 TPC-E Database Schema and Table Definitions ... 48
2.2.1 Data Type Definitions ... 48
2.2.2 Meta-type Definitions ... 49
2.2.3 General Schema Items ... 50
2.2.4 Customer Tables.. 51
2.2.5 Broker Tables .. 55
2.2.6 Market Tables ... 59
2.2.7 Dimension Tables.. 63

2.3 Implementation Rules .. 65
2.3.3 Table Partitioning .. 65
2.3.11 User-Defined Objects .. 66

2.4 Integrity Rules ... 67

2.5 Data Access Transparency Requirements ... 67

2.6 TPC-E Database Size and Table Cardinality .. 68
2.6.1 Initial Database Size Requirements ... 68
2.6.2 Test Run Database Size Requirements .. 71

Clause 3 -- Transactions ... 73

3.1 Introduction ... 73
3.1.1 Definitions ... 73
3.1.2 Database Footprint Definition ... 73

3.2 Transaction Implementation Rules .. 76
3.2.1 Frame Implementation .. 76
3.2.2 Customer Partitioning and Generating Transaction Inputs ... 79

3.3 The Transactions ... 79
3.3.1 The Broker-Volume Transaction... 80
3.3.2 The Customer-Position Transaction .. 83
3.3.3 The Market-Feed Transaction ... 90
3.3.4 The Market-Watch Transaction .. 95
3.3.5 The Security-Detail Transaction ... 100
3.3.6 The Trade-Lookup Transaction ... 108
3.3.7 The Trade-Order Transaction .. 122
3.3.8 The Trade-Result Transaction ... 140
3.3.9 The Trade-Status Transaction ... 160
3.3.10 The Trade-Update Transaction .. 163
3.3.11 The Data-Maintenance Transaction .. 176
3.3.12 The Trade-Cleanup Transaction .. 190

Clause 4 -- Description of SUT, Driver, and Network ... 195

4.1 Overview .. 195
4.1.1 Description of the Real-World OLTP Environment.. 195
4.1.2 Functional Component Abstraction of the Real-World OLTP Environment .. 195
4.1.3 Distillation of Functional Components into the TPC-E Environment ... 196

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 13 of 287

4.2 Driver & System Under Test (SUT) Definitions .. 200

4.3 Example Test Configuration Implementations .. 201

4.4 Further Requirements for SUT and Driver Implementations .. 203
4.4.1 Restrictions on the Driver ... 203
4.4.2 Disclosure of Network Configuration ... 204
4.4.3 SUT Implementation Limits on Operator Intervention ... 204
4.4.4 Synchronization of Time ... 204

Clause 5 -- EGen ... 205

5.1 Overview .. 205

5.2 EGen Terms ... 205

5.3 Compliant EGen Versions ... 206
5.3.5 Using EGen within a Compliant Driver .. 206
5.3.6 Addressing Errors in EGen ... 206
5.3.7 Process for Reporting Issues with EGen ... 207
5.3.8 Submitting EGen Enhancement Suggestions .. 207

5.4 EGenProjectFiles .. 208

5.5 EGenInputFiles ... 208

5.6 EGenSourceFiles ... 208

5.7 EGenLoader .. 208

5.8 EGenDriver ... 208
5.8.5 EGenDriverCE .. 209
5.8.6 EGenDriverMEE ... 209
5.8.7 EGenDriverDM ... 209

5.9 EGenTxnHarness ... 209

5.10 EGenValidate .. 209

Clause 6 -- Execution Rules & Metrics ... 210

6.1 Introduction ... 210
6.1.1 Definition of Terms ... 210

6.2 Driver Implementation Architectures .. 210
6.2.1 The Simple CE .. 210
6.2.2 The Replicated CE .. 211
6.2.3 The Asynchronous CE .. 212
6.2.4 Combinations .. 214
6.2.5 Driver Reporting Requirements .. 214

6.3 Transaction Mix .. 214
6.3.1 Mix Requirements ... 215
6.3.2 Required Precision for Mix Percentage Reporting .. 215
6.3.3 Data-Maintenance ... 215
6.3.4 Trade-Cleanup ... 215

6.4 Transaction Parameters .. 216
6.4.1 Input Value Mix Requirements ... 216
6.4.2 Customer Partitioning ... 217

6.5 Response Time and Pacing Delays .. 218
6.5.1 Response Time .. 218
6.5.2 Dispatch Time and Pacing Delay .. 221

6.6 Test Run ... 221
6.6.1 Definition of Terms ... 221
6.6.2 Database Content .. 222

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 14 of 287

6.6.3 Sustainable Performance ... 222
6.6.4 Steady State ... 223
6.6.5 Measurement Interval .. 223
6.6.6 Database Growth ... 223
6.6.7 Continuous Operation Requirement .. 224
6.6.8 Performance & Database Size ... 225

6.7 Required Reporting ... 225
6.7.1 Reported Throughput .. 225
6.7.2 Test Run Graph ... 226
6.7.3 Primary Metrics ... 226
6.7.4 EGenValidate Results ... 226

Clause 7 -- Transaction and System Properties (ACID) .. 228

7.1 ACID Properties .. 228

7.2 Atomicity Requirements ... 228
7.2.1 Atomicity Property Definition .. 228
7.2.2 Atomicity Tests ... 229

7.3 Consistency Requirements ... 229
7.3.1 Consistency Property Definition ... 229
7.3.2 Consistency Conditions ... 229
7.3.3 Consistency Tests .. 229

7.4 Isolation Requirements .. 230
7.4.1 Isolation Property Definition ... 230
7.4.2 Isolation Tests ... 231

7.5 Durability Requirements ... 235
7.5.1 Definition of Commit .. 235
7.5.2 Definition of Vulnerable Storage Component ... 235
7.5.3 Definition of Single Point(s) of Failure ... 235
7.5.4 Definition of Durable / Durability ... 236
7.5.5 Durability Testing Rules and Guidelines .. 236
7.5.6 Definition of Recovery Terms ... 239
7.5.7 Durability Test Procedure for Single Points of Failures .. 240
7.5.8 Required Reporting for Durability .. 241

7.6 Data Accessibility Requirements ... 242
7.6.1 Definition of Terms ... 242
7.6.2 Data Accessibility Throughput Requirements ... 242
7.6.3 Failure of Durable Media .. 243
7.6.4 Required Reporting for Data Accessibility ... 245

Clause 8 -- Pricing ... 246

8.1 Priced Configuration ... 246

8.2 On-line Storage Requirement .. 246
8.2.5 Archive Operation Requirement ... 247
8.2.6 Back-up Storage Requirements ... 247

8.3 TPC-E Specific Pricing Requirements... 247
8.3.1 Additional Operational Components ... 247
8.3.2 Additional Software .. 247

8.4 Component Substitution ... 247

8.5 Required Reporting ... 248

Clause 9 -- Full Disclosure Report ... 250

9.1 Full Disclosure Report Requirements ... 250

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 15 of 287

9.1.1 General Items .. 250

9.2 Executive Summary Statement ... 250
9.2.1 First Page of the Executive Summary Statement .. 251
9.2.2 Additional Pages of Executive Summary Statement ... 251
9.2.3 ES.xml Requirements .. 252

9.3 Report Disclosure Requirements ... 252
9.3.1 Report Introduction ... 252
9.3.2 Clause 2 Database Design, Scaling & Population Related Items .. 254
9.3.3 Clause 3 Transaction Related Items .. 256
9.3.4 Clause 4 SUT, Driver, and Network Related Items .. 256
9.3.5 Clause 5 EGen Related Items .. 256
9.3.6 Clause 6 Performance Metrics and Response Time Related Items ... 256
9.3.7 Clause 7 Transaction and System Properties Related Items .. 257
9.3.8 Clause 8 Pricing Related Items ... 257
9.3.9 Supporting Files Index Table .. 257

9.4 Supporting Files .. 258
9.4.1 SupportingFiles/Introduction Directory .. 258
9.4.2 SupportingFiles/Clause2 Directory ... 259
9.4.3 SupportingFiles/Clause3 Directory ... 259
9.4.4 SupportingFiles/Clause4 Directory ... 259
9.4.5 SupportingFiles/Clause5 Directory ... 259
9.4.6 SupportingFiles/Clause6 Directory ... 259
9.4.7 SupportingFiles/Clause7 Directory ... 259
9.4.8 SupportingFiles/Clause8 Directory ... 259

Clause 10 -- Independent Audit ... 260

10.1 General Rules ... 260

10.2 Auditing the Database .. 261
10.2.1 Schema Related Items ... 261
10.2.2 Population Related Items .. 262

10.3 Auditing the Transactions ... 262

10.4 Auditing the SUT, Driver and Networks ... 263

10.5 Auditing EGen .. 264

10.6 Auditing the Execution Rules and Metrics .. 265
10.6.1 Pre-run Configuration Items .. 265
10.6.2 Runtime Configuration Items .. 265
10.6.3 Runtime Data Generation Items .. 265
10.6.4 Response Time Items .. 266
10.6.5 C_ID Partitioning Items .. 266
10.6.6 Throughput Items .. 266
10.6.7 Data-Maintenance Items ... 266
10.6.8 Steady State Items ... 266
10.6.9 EGenValidate Items .. 266
10.6.10 Space Calculation Items .. 267

10.7 Auditing the ACID Tests ... 267
10.7.2 Atomicity Items ... 267
10.7.3 Consistency Items ... 267
10.7.4 Isolation Items ... 267
10.7.5 Data Accessibility Items.. 267
10.7.6 Business Recovery Items .. 267

10.8 Auditing the Pricing .. 268

10.9 Auditing the FDR .. 268

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 16 of 287

Appendix A. EGen Userôs Guide .. 270

A.1 Overview ... 270

A.2 EGen Directory ... 270

A.3 EGenProjectFiles ... 271

A.4 EGenInputFiles ... 271

A.5 EGenSourceFiles .. 271

A.6 EGenLoader.. 271

A.7 EGenDriver .. 273

A.8 EGenLogger.. 274

A.9 Implementing a CE using EGenDriverCE .. 274

A.10 Implementing a MEE using EGenDriverMEE .. 274

A.11 Implementing a Data-Maintenance Generator using EGenDriverDM .. 275

A.12 EGenTxnHarness .. 275

A.13 Functional Implementation ... 276

A.14 TPC Defined Interfaces .. 278

Appendix B. Executive Summary Statement .. 280

B.1 Sample Layouts ... 280

B.2 Sample Executive Summary Statement ... 281

Appendix C. TPC-E XML Schema Guide ... 285

C.1 Overview ... 285

C.2 Schema Structure .. 285

Table of Figures

Figure 1.a - Business Model Transaction Flow .. 43

Figure 1.b - Application Components ... 44

Figure 3.a - Frames Interfacing with the Harness and the Database ... 73

Figure 4.a - Diagram of the Real-World OLTP Environment .. 195

Figure 4.b - Abstraction of the Functional Components in an OLTP Environment ... 196

Figure 4.c - Functional Components of the Test Configuration ... 197

Figure 4.d - Defined Components of the Test Configuration .. 200

Figure 4.e - Sample Component of Physical Test Configuration .. 201

Figure 4.f - Separate Driver with Combined Tier A and Tier B ... 202

Figure 4.g - Driver and Tier A Combined, Separate Tier B ... 202

Figure 4.h - Combined Driver, Tier A and Tier B .. 203

Figure 6.a - The Simple CE .. 211

Figure 6.b - The Replicated CE .. 212

Figure 6.c ï Asynchronous Transaction Generator .. 213

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 17 of 287

Figure 6.d ï Non-Blocking Driver Threads of Execution ... 214

Figure 6.e - Measuring Response Time .. 220

Figure 6.f - Example of the Test Run Graph ... 226

Figure 9.a - Example of Measured Benchmark Configuration ... 253

Figure A.a - Hierarchy of EGen Directory ... 270

Figure A.b - High Level Overview of a Sample Implementation .. 276

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 18 of 287

CLAUSE 0 -- PREAMBLE

0.1 Introduction

TPC BenchmarkÊ E (TPC-E) is an On-Line Transaction Processing (OLTP) workload. It is a mixture of
read-only and update intensive transactions that simulate the activities found in complex OLTP
application environments. The database schema, data population, transactions, and implementation
rules have been designed to be broadly representative of modern OLTP systems. The benchmark
exercises a breadth of system components associated with such environments, which are characterized
by:

¶ The simultaneous execution of multiple transaction types that span a breadth of complexity;

¶ Moderate system and application execution time;

¶ A balanced mixture of disk input/output and processor usage;

¶ Transaction integrity (ACID properties);

¶ A mixture of uniform and non -uniform data access through primary and secondary keys;

¶ Databases consisting of many tables with a wide variety of sizes, attributes, and relationships with
realistic content;

¶ Contention on data access and update.

The TPC-E operations are modeled as follows:

¶ The database is continuously available 24 hours a day, 7 days a week, for data processing from

multiple Sessions and data modifications against all tables, except possibly during infrequent (e.g.,

once a month) maintenance Sessions.

¶ Due to the worldwide nature of the application modeled by the TPC -E benchmark, any of the
transactions may be executed against the database at anytime, especially in relation to each other.

0.1.1 Goal of th e TPC-E Benchmark

The TPC-E benchmark simulates the OLTP workload of a brokerage firm. The focus of the benchmark
is the central database that executes transactions related to the firmõs customer accounts. In keeping
with the goal of measuring the performance characteristics of the database system, the benchmark does
not attempt to measure the complex flow of data between multiple application systems that wou ld exist
in a real environment.

The mixture and variety of transactions being executed on the benchmark system is designed to
capture the characteristic components of a complex system. Different transaction types are defined to
simulate the interactions of the firm with its customers as well as its business partners. Different
transaction types have varying run -time requirements.

The benchmark defines:

¶ Two types of transactions to simulate Consumer-to-Business as well as Business-to-Business
activities

¶ Several transactions for each transaction type

¶ Different execution profiles for each transaction type

¶ A specific run -time mix for all defined transactions

For example, the database will simultaneously execute transactions generated by systems that interact
with customers along with transactions that are generated by systems that interact with financial
markets as well as administrative systems.

The benchmark system will interact with a set of Driver systems that simulate the various sources of

transactions without requiring the benchmark to implement the complex environment.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 19 of 287

The Performance M etric reported by TPC-E is a "business throughputó measure of the number of

completed Trade-Result transactions processed per second (see Clause 6.7.1). Multiple Transactions

are used to simulate the business activity of processing a trade, and each Transaction is subject to a

Response Time constraint. The Performance Metric for the benchmark is expressed in transactions-

per-second-E (tpsE). To be compliant with the TPC-E standard, all references to tpsE Results must

include the tpsE rate, the associated price-per-tpsE, and the Availability Date of the Priced

Configuration (See Clause 6.7.3 for more detail).

To be compliant w ith the optional TPC -Energy standard, the additional primary metric, expressed as
watts-per-tpsE, must be reported. The requirments of the TPC-Energy Specification can be found at
www.tpc.org.

Although this specification defines the implementation in terms of a relational data model, the database

may be implemented using any commercially available Database Management System (DBMS) ,

Database Server, file system, or other data repository that provides a functionally equivalent

implementation. The terms "table", "row", and "column" are used in this document only as examples of
logical data structures.

TPC-E uses terminology and metrics that are similar to other benchmarks, originated by the TPC and

others. Such similarity in terminology does not imply that TPC -E Results are comparable to other

benchmarks. The only benchmark Results comparable to TPC-E are other TPC-E Results that conform

to a comparable version of the TPC-E specification.

0.1.2 Restrictions and Limitations

Despite the fact that this benchmark offers a rich environment that represents many OLTP applications,
this benchmark does not reflect the entire range of OLTP requirements. In addition, the extent to which

a customer can achieve the Results reported by a vendor is highly dependent on how closely TPC -E

approximates the customer applicati on. The relative performance of systems derived from this
benchmark does not necessarily hold for other workloads or environments. Extrapolations to any other
environment are not recommended.

Benchmark Results are highly depend ent upon workload, specific application requirements, and

systems design and implementation. Relative system performance will vary because of these and other
factors. Therefore, TPC-E should not be used as a substitute for specific customer application
benchmarking when critical capacity planning and/or product evaluation decisions are contemplated.

Benchmark Sponsors are permitted various possible implementation designs, insofar as they adhere to

the model described and pictori ally illustrated in this specification. A Full Disclosure Report (FDR) of

the implementation details, as specified in Clause 9.1, must be made available along with the reported

Results.

Comment: While separated from the main text for readability, comments are a part of the standard and
must be enforced.

0.2 General Implementation Guidelines

The purpose of TPC benchmarks is to provide relevant, objective performance data to industry users.
To achieve that purpose, TPC benchmark specifications require that benchmark tests be implemented
with systems, products, technologies and pricing that:

¶ Are generally available to users.

¶ Are relevant to the market segment that the individual TPC benchmark models or represents (e.g.,
TPC-E models and represents high-volume, complex OLTP database environments).

¶ A significant number of users in the market segment the benchmark models or repr esents would
plausibly implement.

http://www.tpc.org/

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 20 of 287

The use of new systems, products, technologies (hardware or software) and pricing is encouraged so
long as they meet the requirements above. Specifically prohibited are benchmark systems, products,
technologies, pricing (hereafter referred to as "implementations") whose primary purpose is

performance optimization of TPC benchmark Results without any corresponding applicability to real -

world applications and environments. In other words all "benc hmark specialsó implementations that

improve benchmark Results but not real-world performance or pricing, are prohibited.

The following characteristics should be used as a guide to judge whether a particular implementation is
a benchmark special. It is not required that each point below be met, but that the cumulative weight of
the evidence be considered to identify an unacceptable implementation. Absolute certainty or certainty
beyond a reasonable doubt is not required to make a judgment on this complex issue. The question
that must be answered is this: based on the available evidence, does the clear preponderance (the
greater share or weight) of evidence indicate that this implementation is a benchmark special?

The following c haracteristics should be used to judge whether a particular implementation is a
benchmark special:

¶ Is the implementation generally available, documented, and supported?

¶ Does the implementation have significant restrictions on its use or applicability that limits its use
beyond TPC benchmarks?

¶ Is the implementation or part of the implementation poorly integrated into the larger product?

Does the implementation take special advantage of the limited nature of TPC benchmarks (e.g.,

transaction Profile , Transaction M ix , transaction concurrency and/or contention, transaction isolation)

in a manner that would not be generally applicable to the environment the benchmark represents?

¶ Is the use of the implementation discouraged by the vendor? (This includes failing to promote the
implementation in a manner similar to other products and technologies.)

¶ Does the implementation require uncommon sophistication on the part of the end -user,
programmer, or system administrator?

¶ Is the pricing unusual or non -customary for the vendor, or unusual or non -customary to normal
business practices? See the effective version of the TPC Pricing Specification for additional
information.

¶ Is the implementation being used (includi ng beta) or purchased by end-users in the market area the
benchmark represents? How many? Multiple sites? If the implementation is not currently being
used by end-users, is there any evidence to indicate that it will be used by a significant number of
users?

0.3 General Measurement Guidelines

TPC benchmark Results are expected to be accurate representations of system performance. Therefore,

there are certain guidelines, which are expected to be followed when measuring those Results. The

approach or methodology is explicitly outlined in or described in the specification.

¶ The approach is an accepted engineering practice or standard.

¶ The approach does not enhance the Results.

¶ Equipment used in measuring Results is calibrated according to established quality standards.

¶ Fidelity and candor is maintained in reporting any anomalies in the Results, even if not specified in

the benchmark requirements.

The use of new methodologies and approaches is encouraged so long as they meet the requirements
above.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 21 of 287

CLAUSE 1 -- BENCHMARK OVERVIEW

1.1 Defin itions

NUMBERS _____________________

60-Day Period

Storage must be priced for sufficient space to store and maintain the data and User-Defined Objects

generated during a period of 60 Business Days at the Reported Throughput called the 60-Day Period .

60-Day Space

The 60-Day Space must be computed as:

60-Day Space = Initial Database Size + (60 * Data Growth)

A ___________________________

ACID

ACID ð the transactional properties of Atomicity, Consistency, Isolation and Durability.

Add

The word òAddó indicates that a number of rows are added to the TPC-E table specified by the

Database Footprint . TPC-E Table row(s) can only be added in a Frame where the word òAddó is

specified.

Application

The term Application or Application Program refers to code that is not part of the commercially

available components of the SUT, but used specifically to implement the Transactions (see Clause 3.3)

of this benchmark. For example, stored procedures, triggers, and referential integrity constraints are

considered part of the Application Program when used to implement any portion of the Transactions ,

but are not considered part of the Application Program when solely used to enforce integrity rules (see

Clause 2.4) or transparency requirements (see Clause 2.5) independently of any Transaction .

Application Recovery

Application Recovery: the process of recovering the business application after a Single Point of

Failure and reaching a point where the business meets certain operational criteria.

Application Recovery Time

Application Recovery Time: The elapsed time between the start of Application Recovery and the end

of Application Recovery (see Clause 7.5.6.5).

Arbitrary Transaction

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 22 of 287

An Arbitrary Transaction is a Database Transaction that executes arbitrary operations against the

database at a minimum isolation level of L0 (see Clause 7.4.1.3).

Attestation Letter

Attestation Letter: The Auditor õs opinion regarding the compliance of a Result must be consigned in

an Attestation Letter delivered directly to the Sponsor.

Auditor

See TPC-Certified Auditor .

Availability Date

The date when all products necessary to achieve the stated performance will be available (stated as a

single date on the Executive Summary Statement). This is known as the Availability Date .

B ___________________________

BALANCE_T

BALANCE_T is defined as SENUM(12,2) and is used for holding aggregate account and transaction

related values such as account balances, total commissions, etc.

BLOB(n)

BLOB(n) is a data type capable of holding a variable length binary object of n bytes.

BLOB_REF

BLOB_REF is a data type capable of referencing a BLOB(n) object that is stored outside the table on the

SUT.

BOOLEAN

BOOLEAN is a data type capable of holding at least two distinct values that represent FALSE and

TRUE.

Broker age Initiated

Broker age Initiated : These Transactions simulate broker interactions with the system and are initiated

by the Customer Emulator component of the benchmark Driver .

Broker T ables

Broker Tables: This set includes 9 tables that contain information about the brokerage firm and broker

related data.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 23 of 287

Business Day

Business Day: a period of eight hours of transaction processing activity .

Business Recovery

Business Recovery: the process of recovering from a Single Point of Failure and reaching a point

where the business meets certain operational criteria.

Business Recovery Time

Business Recovery Time: the elapsed period of time between start of Business Recovery and end of

Business Recovery (see Clause 7.5.6.9).

C ___________________________

Catastrophic

Catastrophic : a type of failure where processing is interrupted without any foreknowledge given to the SUT.

Subsequent to this interruption, only in the failed database instance are all contexts for all active
applications lost and all memory cleared .

CE

See Customer Emulator .

CHAR(n)

CHAR(n) means a character string that can hold up to n single-byte characters. Strings may be padded

with spaces to the maximum length . CHAR (n) must be implemented using a Native Data Type .

Commit / Committed

Commit : a control operation that:

¶ Is initiated by a unit of work (a Transaction)

¶ Is implemented by the DBMS

¶ Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to be

Committed .

Configured Customers

Configured Customers means the number of customers (with corresponding rows in the associated

TPC-E tables) configured at database generation.

Customer Emulator

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 24 of 287

One key piece of a compliant TPC-E Driver is the Customer Emulator (CE). The CE is responsible for

emulating customers, requesting a service of the brokerage house, providing the necessary input for the

requested service, etc. Therefore, the CE is responsible for the following.

¶ Deciding which Customer Initiated or Brokerage Initiated Transaction to perform next (Broker -

Volume, Customer -Position, Market -Watch, Security-Detail, Trade-Lookup, Trade-Order, Trade-
Update and Trade-Status).

¶ Generating compliant data to be used as inputs for the selected Transaction .

¶ Sending the Transaction request and associated input data to the SUT.

¶ Receiving the Transaction response and associated output data from the SUT.

¶ Measuring the Transaction's Response Time.

Comment: The CE may optionally perform additional operations as well, such as statistical accounting,

data logging, etc.

Customer Initiated

Customer Initiated: These Transactions simulate customer interactions with the system and are

initiated by the Customer Emulator component of the benchmark Driver .

Customer Tables

Customer Tables: This set includes 9 tables that contain information about the customers of the

brokerage firm.

D ___________________________

Data Accessibility

Data Accessibility : The ability to maintain database operations with full data access after the

permanent irrecoverable failure of any single Durable Medium containing database tables, recovery

log data, or Database Metadata.

Data Accessibility Throughput Requirements

Data Accessibility Throughput Requirements: Conditions the SUT must satisfy for all Data

Accessibi lity tests (see Clause 7.6.2).

Data-Maintenance Generator

Another key piece of a compliant TPC-E Driver is the single instance of the Data-Maintenance

Generator (DM). The DM is responsible for:

¶ Generating compliant data to be used as inputs for the Data-Maintenance Transaction

¶ Sending the Transactionõs request and associated input data to the SUT

¶ Receiving the Transactionõs response and associated output data from the SUT and measuring the

TransactionɀÚ Response Time .

Comment: The DM may optionally perform additional operations as well , such as statistical accounting,

data logging, etc. The DM may optionally be used to initiate a single Trade -Cleanup Transaction

before the start of a Test Run .

Database Footprint

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 25 of 287

The Database Footprint of a Transaction is the set of required database interactions to be executed by

that Transaction .

Database Interface

Database Interface ð Commercially available product used by the Frame Implementation to

communicate with the Database Server. It is possible that the Database Interface may communicate

with the Database Server over a Network , but this is not a requirement.

Database Logic

Database Logic ð Sponsor written Frame implementation logic (e.g. stored SQL procedure).

Database Management System

A Database Management System (DBMS) is a collection of programs that enable you to store, modify,

and extract information from a database. There are many different types of DBMS s, ranging from small

systems that run on personal computers to huge systems that run on mainframes. From a technical

standpoint, DBMS s can differ widely. Th e terms relational, network, flat, and hierarchical all refer to

the way a DBMS organizes information internally. The internal organization can affect how quickly

and flexibly you can extract information. Requests for information fr om a database are made in the
form of a query, which is a stylized question. The set of rules for constructing queries is known as a
query language. The information from a database can be presented in a variety of formats. Most

DBMS s include a report write r program that enables you to output data in the form of a report.

Database Metadata

Database Metadata: information managed by the DBMS and stored in the database to define, manage

and use the database objects, e.g. tables, views, synonyms, value ranges, indexes, users, etc.

Database Recovery

Database Recovery: the process of recovering the database from a Single Point of Failure system

failure.

Database Recovery Time

Database Recovery Time: the duration from the start of Database Recovery to the point when database

files complete recovery.

Database Server

Database Server ð Commercially available product(s). Sponsor provided logic may run in the context

of the Database Server (e.g. a stored SQL procedure). An example of a Database Server is:

¶ commercially available DBMS running on a

¶ commercially available Operating Sys tem running on a

¶ commercially available hardware system utilizing

¶ commercially available storage

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 26 of 287

Database Session

To work with a database instance, to make queries or to manage the database instance, you have to

open a Database Session. This can happen as follows: The user logs on to the database with a user

name and password, thus opening a Database Session. Later, the Database Session is terminated

explicitly by the user or closed implicitly when the timeout value is exceeded. A database tool

implicitl y opens a Database Session and then closes it again.

Database Transaction

A Database Transaction is an ACID unit of work.

Data Growth

Data Growth : the space needed in the DBMS data files to accommodate the increase in the Growing

Tables resulting from executing the Transaction Mix at the Reported Throughput during the period of

required Sustainable performance.

Data Growth = Data-Space-per-Trade-Result * tpsE * Business Day duration in seconds

DATE

DATE represents the data type of date with a granularity of a day and must be able to support the

range of January 1, 1800 to December 31, 2199, inclusive. DATE must be implemented using a Native

Data Type .

Comment: A time component is not required but may be implemented.

DATETIME

DATETIME represents the data type for a date value that includes a time component. The date

component must meet all requirements of the DATE data type. The time component must be capable of

representing the range of time values from 00:00:00 to 23:59:59. Fractional seconds may be

implemented, but are not required. DATE TIME must be implemented using a Native Data Type .

DBMS

See Database Management System

Digit

Digit means decimal digit.

Dimension Tables

Dimension Tables: This set includes 4 dimension tables that contain common information such as

addresses and zip codes.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 27 of 287

Dispatch Time

Each EGenDriverCE thread of execution calling the EGenDriver Connector interface creates a

sequence of Transactions, defined chronologically as { T1, T2, é Tn }. Within each sequence, the

Dispatch Time of Transaction n is defined as follows:

¶ for the Non-Blocking Driver Thread architecture (see 6.2.3.2)

¶ For n=1: DT n = 0

¶ For n>1: DT n = (sTn ð sTn-1)

¶ for all other architectures in Clause 6.2

¶ For n=1: DT n = 0

¶ For n>1: DT n = sTn ð eTn-1

¶ Where sTn and eTn are defined in Clause 6.5.1.1

DM

See Data-Maintenance Generator .

Driver

To measure the performance of the OLTP system, a simple Driver generates Transactions and their

inputs, submits them to the System Under Test , and measures the rate of completed Transactions

being returned. To simplify the benchmark and focus on the core transactional performance, all
application functions related to user interface and display functions have been excluded from the

benchmark. The System Under Test is focused on portraying the components found on the server side

of a transaction monitor or application server.

Durability

See Durable .

Durability Throughput Requirements

Durability Throughput Requirements: conditions the SUT must satisfy for all Durability tests (see

Clause 7.5.5.1).

Durable / Durability

Durable / Durability : In general, state that persists across failures is said to be Durable and an

implementation that ensures state persists across failures is said to provide Durability . In the context

of the benchmark, Durability is more tightly defined as the SUTõs ability to ensure all Committed data

persist across any Single Point of Failure .

Durable Medium

Durable Medium: a data storage medium that is inherently non -volatile such as a magnetic disk or

tape. Durable Media is the plural of Durable Medium .

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 28 of 287

E ___________________________

EGen

EGen is a TPC provided software environment that must be used in a Test Sponsor's implementation

of the TPC-E benchmark. The software environment is logically divided into three package s:

EGenProjectFiles , EGenInputFiles , and EGenSourceFiles. The software packages provide

functionality to use: EGenLoader to generate the data used to populate the database, EGenDriver to

generate transactional data and EGenTxnHarness to control frame invocation.

EGenDriver

EGenDriver comprises the following parts:

¶ EGenDriverCE provides the core functionality necessary to implement a Customer

Emulator .

¶ EGenDriverMEE provides the core functionality necessary to implement a Market

Exchange Emulator .

¶ EGenDriverDM provides the core functionality necessary to implement the Data-

Maintenance Ge nerator .

EGenDriver provides core transactional functionality (e.g. Transaction M ix and input generation)

necessary to implement a Driver .

EGenDriverCE

EGenDriverCE ð any and/or all instantiati ons of the CCE class (see EGenSourceFiles CE.h and

CE.cpp).

EGenDriverDM

EGenDriverDM ð the single instantiation of the CDM class (see EGenSourceFiles DM.h and DM.cpp).

EGenDriverMEE

EGenDriverMEE ð any and/or all ins tantiations of the CMEE class (see EGenSourceFiles MEE.h and

MEE.cpp).

EGenInputFiles

EGenInputFiles is a set of TPC provided text files containing rows of tab -separated data, which are

used by various EGen packages as òrawó material for data generation.

EGenLoader

EGenLoader is a binary executable, generated by using the methods described in EGenProjectFiles

with source code from EGenSourceFiles, including any extensions by a Test Sponsor (see Clause

5.7.4). When executed, EGenLoader uses EGenInputFiles to produce a set of data that represents the

initial state of the TPC-E database.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 29 of 287

EGenLogger

EGenLogger logs the initial configuration and any re -configuration of EGenDriver and EGenLoader,

and compares current configuration with the TPC -E prescribed defaults.

EGenProjectFiles

EGenProjectFiles is a set of TPC provided files used to facilitate building the EGen packages in a Test

Sponsor's environments.

EGenSourceFiles

EGenSourceFiles is the collection of TPC provided C++ source and header files.

EGenTables

EGenSourceFiles contain class definitions that provide abstractions of the TPC-E tables. These table

classes are known collectively as EGenTables and they encapsulate the functionality needed to

generate the data for each of the TPC-E tables.

EGenValidate

EGenValidate is a binary executable, generated by using methods described in EGenProjectFiles with

source code from EGenSourceFiles. When executed, EGenValidate uses Sponsor provided input to

validate that the Sponsor's Measurement Interval had compliant Trade -Results per Load Unit .

EGenTxnHarness

EGenTxnHarness defines a set of interfaces that are used to control the execution of, and

communication of inputs and outputs, of Transactions and Frames.

ENUM

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).

ENUM and SENUM are identical to NUM and SNUM , respectively, except that they must be

implemented using a Native Data Type which provides exact representation of at least n Digits of

precision after the decimal place.

Executive Summary Statement

The term Executive Summary Statement refers to the Adobe Acrobat PDF file in the

ExecutiveSummaryStatement folder in the FDR. The contents of the Executive Summary Statement are

defined in Clause 9.

F ___________________________

FDR

The FDR is a zip file of a directory structure containing the following:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 30 of 287

¶ A Report in Adobe Acrobat PDF format,

¶ An Executive Summary Statement in Adobe Acrobat PDF format,

¶ An XML document (òES.xmló) with approximately the same information as in the Executive

Summary Statement ,

¶ The Supporting Files consisting of various source files, scripts, and listing files. Requirements for

the FDR file directory stru cture are described below.

Comment: The purpose of the FDR is to document how a benchmark Result was implemented and

executed in sufficient detail so that the Result can be reproduced given the appropriate hardware and

software products.

FIN_AGG_T

FIN_AGG_T is defined as SENUM(15,2) and is used for holding aggregated financial data such as

revenue figures, valuations, and asset values.

Fixed Space

Fixed Space: any other space used to store static information and indices. It includes all database

storage space allocated to the test database which does not qualify as either Free Space or Growing

Space.

Fixed Tables

Fixed Tables : These tables always have the same number of rows regardless of the database size and

transaction throu ghput. For example, TRADE_TYPE has five rows.

Foreign Key

A Foreign Key (FK) is a column or combination of columns used to establish and enforce a link

between the data in two tables. A link is created between two tables by adding the column or columns

that hold one table's Primary Key values to the other table. This column becomes a Foreign Key in the

second table.

Frame

A Frame is the Sponsor implemented Transaction logic, which is invoked as a unit of execution by the

EGenTxnHarness . The database interactions of a Transaction are all initiated from within its Frames.

Frame Implementation

Frame Implementation ð Sponsor provided functionality that accepts inputs from, and provides

outputs to, EGenTxnHarness through a TPC Defined Interface. The Frame Imp lementation and all

down -stream functional components are responsible for providing the appropriate functionality

outlined in the Transaction Profiles (Clause 3.3).

Free Space

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 31 of 287

Free Space: any space allocated to the test database and available for future use. It includes all

database storage space not already used to store a database entity (e.g., a row, an index, Database

M etadata) or not already used as formatting overhead by the DBMS .

Full Disclosure Report (FDR)

See FDR.

G ___________________________

Growing Space

Growing Space: any space used to store existing rows from the Growing Tables and their associated

User-Defined Objects . It includes all database storage space that is added to the test database as a

result of inserting a new row in the Growing Tables, such as row data, index data and other overheads

such as index overhead, page overhead, block overhead, and table overhead.

Growing Tables

Growing Tables : These tables each have an initial cardinality that has a defined relationship to the

cardinality of the CUSTOMER table. However, the cardinality increases with new growth during the
benchmark run at a rate that is proportional to transaction throughput rates.

H ___________________________

I ___________________________

IDENT_T

IDENT_T is defined as NUM(11) and is used to hold non-trade identifiers.

Initial Database Size

Initial Database Size is measured after the database is initially loaded with the data generated by

EGenLoader. Initial Database Size is any space allocated to the test database which is used to store a

database entity (e.g. a row, an index, Database Metadata), or used as formatting overhead by the data

manager.

Initial Trade Days

The Initial Trade Days (ITD) is the number of Business Days used to populate the database. This

population is made of trade data that would be generated by the SUT when running at the Nominal

Throughput for the specified number of Business Days. The number of Initial Trade Days is 300.

ITD

See Initial Trade Days .

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 32 of 287

J ___________________________

K __________________________

L __________________________

Load Unit

The size of the CUSTOMER table can be increased in increments of 1000 customers. A set of 1000

customers is known as a Load Unit .

Log Growth

Log Growth : the space needed in the DBMS log f iles to accommodate the Undo/Redo Log resulting

from executing the Transaction M ix at the Reported Throughput during the period of required

Sustainable performance.

Log Growth = Log-Space-per-Trade-Result * tpsE * Business Day duration in seconds

M ___________________________

Market Exchange Emulator

Another key piece of a compliant TPC-E Driver is the Market Exchange Emulator (MEE) . The MEE is

responsible for emulating the stock exchanges: providing services to the brokerage house, performing

requested trades, providing market activity updates, etc. Therefore, the MEE is responsible for the

following:

¶ Receiving trade requests and their associated data from the SUT.

¶ Initiating Trade -Result Transactions, sending the associated data to the SUT and measuring the

Transactionõs Response Time.

¶ Initiating Market -Feed Transactions, sending the associated data to the SUT and measuring the

Transactionõs Response Time .

Comment: The MEE may optionally perform additional operations as well; such as statistical accountin g,

data logging, etc.

Market Tables

Market Tables: This set includes 11 tables that contain information about companies, markets,

exchanges, and industry sectors.

Market T riggered

Market T riggered : These Transactions simulate the behavior of the market and are triggered by the

Market Exchange Emulator component of the benchmark Driver .

May

The word òmayó in the specification means that an item is truly optional .

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 33 of 287

Measured Configuration

See System Under Test .

Measured Throughput

The Measured Throughput is computed as the total number of Valid Trade-Result Transactions

within the Measurement Interval divided by the duration of the Measurement Interval in seconds.

Measurement Interval

Measurement Interval : the period of time during Steady State chosen by the Test Sponsor to compute

the Reported Throughput .

MEE

See Market Exchange Emulator

Modify

The word òModify ó indicates that the content of a TPC-E table column is modified within the Frame.

The content of the table column can only be changed in a Frame where the word òModify ó is specified.
When the original content of the table column must also be referenced or returned before it is modified,

a òReferenceó or a òReturnó access method is also specified.

Must

The word òmustó or the terms òrequiredó, òrequiresó, òrequirementó or òshalló in the specification,

means that compliance is mandatory.

Must not

The phrase òmust notó or the term òshall notó in the specification, means that this is an absolute

prohibition of the specificatio n.

N ___________________________

Native Data Type

A Native Data Type is a built -in data type of the DBMS whose documented purpose is to store data of

a particular type described in the specification. For example, DATETIME must be implemented with a

built -in data type of the DBMS designed to store date-time information.

Network

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 34 of 287

Network ð Sponsor provided functionality that must support communication through an industry

standard communications protocol using a physical means. One outstanding feature of the Connector ð

Network ð Connector communication is that it follows the relevant standards and must imply more

than just an application package. It must be possible to have concurrent use of the means by other
applications. Physical transport of the data is required and the underlying means of this transport must
be capable of operating over arbitrary globally geographic distances. TPC/IP over a local area network

is an example of an acceptable Network implementation.

Nominal Throughput

The Nominal Throughpu t of the TPC-E benchmark is defined to be 2.00 Transactions -Per-Second-E

(tpsE) for every 1000 customer rows in the Configured Customers.

Non -catastrophic

The term Non-catastrophic as applied to a single failure is one where processing is not interrupted, but

throughput may be degraded and the SUT may no longer be in a durable state until the SUT has

recovered from the failure.

NUM(m[,n])

NUM(m[,n]) means an unsigned numeric value with at least m total Digits , of which n Digits are to the

right (after) th e decimal point. The data type must be able to hold all possible values which can be

expressed as NUM(m[,n]) . Omitting n, as in NUM(m) , indicates the same as NUM(m,0) . NUM must be

implemented using a Native Data Type .

O ___________________________

On-Line

A storage device is considered On-Line if it is capable of providing an access time to data, for random

read or update, of one second or less by the Operating System .

Comment: Examples of On-Line storage may include magnetic disks, optical disks, solid -state storage,

or any combination of these, provided that the above mentioned access criteria is met.

Operating System/OS

The term Operating System refers to the program that, after being initially loaded into the compute r by

a boot program, manages all the other programs in a computer. The Operating System provides a

software platform on top of which all other programs run. Without the Operating System and the core

services that it provides no other programs can run and t he computer would be non -functional. Other

programs make use of the Operating System by making requests for services through a defined

application program interface (API). All major computer platforms require an Operating System . The

functions and services supplied by an Operating System include but are not limited to the following:

¶ Manages a dedicated set of processor and memory resources.

¶ Maintains and manages a file system.

¶ Loads applications into memory.

¶ Ensures that the resources allocated to one application are not used by another application in an
unauthorized manner.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 35 of 287

¶ Determines which applications should run in what order, and how much time should be allowed to
run the application before giving another application a turn to use the systems resources.

¶ Manages the sharing of internal memory among multiple applications.

¶ Handles input and output to and from attached hardware devices such as hard disks, network
interface cards etc.

Some examples of Operating System s are listed below:

¶ Windows

¶ Uni xes (Solaris, AIX)

¶ Linux

¶ MS-DOS

¶ Mac OS

¶ VMS

¶ Netware

P ___________________________

Pacing Delay

Pacing Delay is defined as the total time injected into the Dispatch Time (DT n) that is intended to

decrease the rate at which Transactions are submitted to the SUT.

Part Number

See the definition of Part Number in the TPC Pricing Specification.

Performance Metric

The TPC-E Reported Throughput as expressed in tpsE. This is known as the Performance Metric .

Priced Configuration

Priced Configuration : The components to be priced defined in the benchmark specification, including

all hardware, software and maintenance.

Price/Performance Metric

The TPC-E total 3-year pricing divided by the Reported Throughput is price/tpsE. This is also known

as the Price/Performance M etric .

Primary Key

A Primary Key is a single column or combination of columns that uniquely identifies a row. None of

the columns that are part of the Primary Key may be nullable. A table must have no more than one

Primary Key .

Profile

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 36 of 287

Profile : the characteristics of a Transaction , as defined by the Pseudo-code and summarized by the

Database Footprint .

Pseudo-code

Pseudo-code is a description of an algorithm that uses the structural conventions of programming

languages, but omits language-specific syntax.

Q ___________________________

R ___________________________

Ramp-down

Ramp-down: the period of time from the end of Steady State to the end of the Test Run .

Ramp-up

Ramp-up: the period of time from the start of the Test Run to the start of Steady State.

Redundancy Level One

Redundancy Level One (Durable Media Redundancy): Guarantees access to the data on Durable

M edia when a single Durable M edia failure occurs.

Redundancy Level Three

Redundancy Level Three (Full Redundancy) : Includes Redundancy Level Two and guarantees access

to the data on Durable M edia when a single failure occurs within the Durable Media system,

including communications between Tier B and the Durable Media system.

Redundancy Level Two

Redundancy Level Two (Durable Media Controller Redu ndancy) : Includes Redundancy Level One

and guarantees access to the data on Durable M edia when a single failure occurs in the storage

controller used to satisfy the redundancy level or in the communication media between the storage

controller and the Durab le Media .

Reference

The word òReferenceó indicates that the TPC-E table column is identified in the database and the

content is accessed within the Frame without passing the content of the table column to the

EGenTxnHarness .

Referential Integrity

Referential Integrity preserves the relationship of data between tables, by restricting actions performed

on Primary Keys and Foreign Keys in a table.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 37 of 287

Remove

The word òRemoveó indicates that a number of rows are removed from the TPC-E table specified by

the Database Footprint . Table row(s) can only be removed in a Frame where the word òRemoveó is

specified. The number of rows that are removed is specified in the second column of the Database

Footprint with either ò# rowó for a fixed number of rows or òrow(s)ó for an unspecified number of

rows.

Report

The term Report refers to the Adobe Acrobat PDF file in the Report folder in the FDR. The contents of

the Report are defined in Clause 9.

Reported

The term Reported refers to an item that is part of the FDR.

Reported Throughput

The Performance Metric reported by TPC-E is the Reported Throughput . The name of the metric used

for the Reported Throughput of the SUT is tpsE. The value of this metric is based on the Measured

Throughput and is bound by the requirements of Clause 6.7.1.2.

Response Time

The Response Time (RT) is defined by:

RTn = eTn - sTn

where:

sTn and eT n are measured at the Driver ;

sTn = time measured before the first byte of input data of t he Transaction is sent by the Driver

to the SUT; and

eTn = time measured after the last byte of output data from the Transaction is received by the

Driver from the SUT.

Comment: The resolution of the time stamps used for measuring Response Time must be at least 0.01

seconds.

Results

TPC-E Results are the Performance Metric , Price/Performance Metric .

Return

The word òReturnó indicates that the TPC-E table column is referenced and that its content is retrieved

from the database and passed to the EGenTxnHarn ess. The table column must be referenced in the

same Frame where the word òReturnó is specified. The content of the table column can only be passed

to subsequent Frames via the input and output parameters specified in the Frame parameters.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 38 of 287

Rollback

The word òRollbackó indicates that the specified Frame contains a control operation that rolls back the

Database Transaction . The explicit rolling back of a Database Transaction can only occur in a Frame

where the word òRollbackó is specified.

RT

See Response Time .

S ___________________________

S_COUNT_T

S_COUNT_T is defined as NUM(12) and is used for holding the aggregate count of shares used in

many tables.

S_PRICE_T

S_PRICE_T is defined as ENUM (8,2) and is used for holding the value of a share price.

S_QTY_T

S_QTY_T is defined as SNUM(6) and is used for holding the quantity of shares per individual trade.

Scale Factor

The Scale Factor is the number of required customer rows per single Transaction s-Per-Second-E

(tpsE). The Scale Factor for Nominal Throu ghput is 500.

Scaling Tables

Scaling Tables : These tables each have a defined cardinality that has a constant relationship to the

cardinality of the CUSTOMER table. Transactions may update rows from these tables, but the table

sizes remain constant.

SENUM

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).

ENUM and SENUM are identical to NUM and SNUM , respectively, except that they must be

implemented using a Native Data Type which provides exact representation of at least n Digits of

precision after the decimal place.

Session

See Database Session.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 39 of 287

SF

See Scale Factor.

Should

The word òshouldó or the adjective òrecommendedó, mean that there might exist valid reasons in

particular circumstances to ignore a particular item, but the full implication must be understood and
weighed before choosing a different course.

Should not

The phrase òshould notó, or the phrase ònot recommendedó, means that there might exist valid reasons
in particular circumsta nces when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior
described with this label.

SNUM

SNUM(m[,n]) is identical to NUM(m[,n]) except that it can represent both positive and negative values.

SNUM must be implemented using a Native Data Type .

Comment: A SNUM data type may be used (at the S×ÖÕÚÖÙɀÚ discretion) anywhere a NUM data type is

specified.

Sponsor

See Test Sponsor.

Start

The word òStartó indicates that the specified Frame contains a control operation that starts a Database

Transaction . The start of a Database Transaction can only occur in a Frame where the word òStartó is

specified.

Steady State

Steady State: the period of time f rom the end of the Ramp-up to the start of the Ramp-down .

Substitution

Substitution is defined as a deliberate act to replace components of the Priced Configuration by the

Test Sponsor as a result of failing the availability requirements of the TPC Pricing Specification or

when the Part Number for a component changes.

Supporting Files

Supporting Files refers to the contents of the SupportingFiles folder in the FDR. The contents of this

folder, consisting of various source files, scripts, and listing file s, are defined in Clause 9.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 40 of 287

Sustainable

Sustainable: the performance over a given period of time (computed as the average throughput over

that time) shows no significant variations.

SUT

See System Under Test .

System Under Test

System Under Test (SUT) ð is defined to be the sum of Tier A and Tier B .

T ___________________________

Test Sponsor

The Test Sponsor is the company officially submitting the Result with the FDR and will be charged the

filing fee. Although multiple companies may sponsor a Result together, for the purposes of the TPCõs

processes the Test Sponsor must be a single company. A Test Sponsor need not be a TPC member. The

Test Sponsor is responsible for maintaining the FDR with any necessary updates or corrections. The

Test Sponsor is also the name used to identify the Result .

Test Run

Test Run: the entire period of time during which Drivers submit and the SUT completes Transactions
other than Trade-Cleanup.

Test Run Graph

A graph of the Trade-Results per second averaged over one minute versus elapsed wall clock time

measured in minutes must be reported for the entire Test Run. The x-axis represents the elapsed time

from the Test Run start. The y-axis represents the total number of Trade-Result Transactions that

complete within each one-minute interval divided by 60. A plot interval size of 1 minute must be used.

The Ramp-up, Steady State, Measurement Interval , and Ramp-down must be identified on the graph.

The Test Run Graph must be reported in the Report .

Tier A

Tier A ð is defined to be all hardware and software needed to imp lement the down -stream Connector,

EGenTxnHarness , Frame Implementation and Database Interface functional components.

Tier B

Tier B ð is defined to be all hardware and software needed to implement the Database Server

functional component. This includes dat a storage media sufficient to satisfy the initial database

population requirements of clause 2.6.1 and the Business Day growth requirements of clause 6.6.6.4

and clause 6.6.6.5.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 41 of 287

TPC-Certified Auditor

The term TPC-Certified Auditor is used to indicate that the TPC has reviewed the qualification of the

Auditor and has certified his/her ability to verify that benchmark Results are in compliance with this

specification. (Ad ditional details regarding the Auditor certification process and the audit process can

be found in Section 9 of the TPC Policy document.)

TPC Defined Interface

A TPC Defined Interface is a C++ class member which is designed to exchange data (and transfer

execution control) between the Sponsor-provided Driver/SUT code and the TPC-provided Driver/SUT

code.

TRADE_T

TRADE_T is defined as NUM(15) and is used to hold trade identifiers.

Transaction(s)

The TPC-E Transactions are at the heart of the workload. The core of each Transaction runs on the

Database Server, but the logic of the Transaction interacts with several components of the benchmark

environment.

A Transaction is composed of Harness-code and of the invocation of one or more Frames. The Trade-

Cleanup Transaction is an exception. Sponsors may but do not have to run the Trade -Cleanup

Transaction from EGenTxnHarness .

Transaction M ix

The Transaction Mix is composed of all Customer Initiated, Brokerage Initiated and Market Triggered
Transactions.

Tunab le Parameters

Tunable Parameters are parameters, switches or flags that can be changed to modify the behavior of

the product. Tunable Parameters apply to both hardware and software and are not limited to those

parameters intended for use by customers.

U ___________________________

U*x

U*x is used in this specification to refer to various UNIX and Linux flavors (e.g. UNIX , Linux, AIX,

Solaris).

Undo/Redo Log

Undo/Redo Log : records all changes made in data files. The Undo/Redo Log makes it possible to replay

all the actions executed by the Database Management System. If something happens to one of the data

files, a backed up data file can be restored and the Undo/Redo Log that was written since the backup

can be played and applied which brings the data file to the state it had before it became unavailable.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 42 of 287

User-Defined Object

Any object defined in the database is considered a User-Defined Object , except for the following:

¶ a TPC-E Table (see clause 2.2.3)

¶ a required Primary Key (see clause 2.2.3.1)

¶ a required Foreign Key (see clause 2.2.3.2)

¶ a required constraint (see clause 2.2.3.3)

¶ Database M etadata

V ___________________________

Valid Transaction

The term Valid Transaction refers to any Transaction for which input data has been sent in full by the

Driver , whose processing has been successfully completed on the SUT and whose correct output data

has been received in full by the Driver .

VALUE_T

VALUE_T is defined as SENUM(10,2) and is used for holding non -aggregated transaction and security

related values such as cost, dividend, etc.

Vulnerable Storage Component

Vulnerable Storage Co mponent ð any Field Replaceable Unit (FRU) within the SUT that:

¶ Has volatile storage (is not Durable Media)

¶ Participates in implementing the Commit control operation

W ___________________________

X ___________________________

Y ___________________________

Z ___________________________

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 43 of 287

1.2 Business and Application Environment

TPC BenchmarkÊ E is composed of a set of transactional operations designed to exercise system
functionalities in a manner representative of complex OLTP application environments. These
transactional operations have been given a life-like context, portraying the activity of a brokerage firm,
to help users relate intuitively to the components of the ben chmark. The TPC-E workload is centered
on the activity of processing brokerage trades and uses a schema, which is logically divided into four
sets of tables.

TPC-E models the activity of brokerage firm that must manage customer accounts, execute customer
trade orders, and be responsible for the interactions of customers with financial markets. TPC-E does
not attempt to be a model of how to build an actual application. The following diagram illustrates the
transaction flow of the business model portrayed in the benchmark:

Customer

Brokerage

Market

Customer

Initiated

Transactions

Market

Triggered

Transactions

Customer

Brokerage

Market

Customer

Initiated

Transactions

Market

Triggered

Transactions

Figure 1.a - Business Model Transaction Flow

The purpose of a benchmark is to reduce the diversity of operations found in a production application,
while retaining the application's essential performance characteristics so that the workload can be
representative of a production system. A large number of functions have to be performed to manage a
production brokerage system. Many of these functions are not of primary interest for performance
analysis, since they are proportionally small in terms of system resource utilization or in terms of
frequency of execution. Although these functions are vital for a production system, they merely create
excessive diversity in the context of a standard benchmark and have been omitted in TPC-E.

The Company portra yed by the benchmark is a brokerage firm with customers who generate
transactions related to trades, account inquiries, and market research. The brokerage firm in turn
interacts with financial markets to execute orders on behalf of the customers and updates relevant
account information.

The number of customers defined for the brokerage firm can be varied to represent the workloads of
different size businesses.

The TPC-E benchmark is composed of a set of transactions that are executed against three sets of
database tables that represent market data, customer data, and broker data. A fourth set of tables
contains generic dimension data such as zip codes. The following diagram illustrates the key
components of the environment:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 44 of 287

Customers Brokers Market

READ-WRITE

ÅMarket-Feed

ÅTrade-Order

ÅTrade-Result

ÅTrade-Update

ÅSecurity-Detail

ÅTrade-Lookup

ÅTrade-Status

READ-ONLY

ÅBroker-Volume

ÅCustomer-Position

ÅMarket-Watch

Invoke the following transactions é

é against the following data

Customer Data Brokerage Data Market Data

Customers Brokers Market

READ-WRITE

ÅMarket-Feed

ÅTrade-Order

ÅTrade-Result

ÅTrade-Update

ÅSecurity-Detail

ÅTrade-Lookup

ÅTrade-Status

READ-ONLY

ÅBroker-Volume

ÅCustomer-Position

ÅMarket-Watch

READ-WRITE

ÅMarket-Feed

ÅTrade-Order

ÅTrade-Result

ÅTrade-Update

ÅSecurity-Detail

ÅTrade-Lookup

ÅTrade-Status

READ-ONLY

ÅBroker-Volume

ÅCustomer-Position

ÅMarket-Watch

Invoke the following transactions é

é against the following data

Customer Data Brokerage Data Market Data

Figure 1.b - Application Components

The benchmark has been reduced to simplified form of the application environment. To measure the

performance of the OLTP system, a simple Driver generates Transactions and their inputs, submits

them to the System Under Test , and measures the rate of completed Transactions being returned. To

simplify the benchmark and focus on the core transactional performance, all application functions

related to user interface and display functions have been excluded from the benchmark. The System

Under Test is focused on portraying the components found on the server side of a transaction monitor

or application server.

1.3 Transaction Summary

1.3.1 Broker -Volume

The Broker-Volume Transaction is designed to emulate a brokerage houseõs òup-to-the-minuteó

internal busi ness processing. An example of a Broker-Volume Transaction would be a manager

generating a report on the current performance potential of various brokers.

1.3.2 Customer-Position

The Customer-Position Transaction is designed to emulate the process of retrieving the customerõs

profile and summarizing their overall standing based on current market values for all assets. This is
representative of the work performed when a customer asks the question òWhat am I worth today?ó

1.3.3 Market -Feed

The Market-Feed Transaction is designed to emulate the process of tracking the current market

activity. This is representative of the brokerage house processing the òticker-tapeó from the market
exchange.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 45 of 287

1.3.4 Market -Watch

The Market-Watch Transaction is designed to emulate the process of monitoring the overall

performance of the market by allowing a customer to track the current daily trend (up or down) of a
collection of securities. The collection of securities being monitored may be based upon a customerõs
current holdings, a customerõs watch list of prospective securities, or a particular industry.

1.3.5 Security -Detail

The Security-Detail Transaction is designed to emulate the process of accessing detailed information on

a particular security. This is representative of a customer doing research on a security prior to making a
decision about whether or not to execute a trade.

1.3.6 Trade-Lookup

The Trade-Lookup Transaction is designed to emulate information retrieval by either a customer or a

broker to satisfy their questions regarding a set of trades. The various sets of trades are chosen such that
the work is representative of:

¶ performing general market analysis

¶ reviewing trades for a period of time prior to the most recent account statement

¶ analyzing past performance of a particular security

¶ analyzing the history of a particular customer holding

1.3.7 Trade-Order

The Trade Order Transaction is designed to emulate the process of buying or selling a security by a

Customer, Broker, or authorized third -party. If the person executing the trade order is not the account

owner, the Transaction will verify that the person has the appropriate authorization to perform the

trade order. The Transaction allows the person trading to execute buys at the current market price,

sells at the current market price, or limit buy s and sells at a requested price. The Transaction also

provides an estimate of the financial impact of the proposed trade by providing profit/loss data, tax
implications, and anticipated commission fees. This allows the trader to evaluate the desirabilit y of the
proposed security trade before either submitting or canceling the trade.

1.3.8 Trade-Result

The Trade-Result Transaction is designed to emulate the process of completing a stock market trade.

This is representative of a brokerage house receiving from the market exchange the final confirmation
and price for the trade. The customerõs holdings are updated to reflect that the trade has completed.
Estimates generated when the trade was ordered for the broker commission and other similar
quantities are replaced with the actual numbers and historical information about the trade is recorded
for later reference.

1.3.9 Trade-Status

The Trade-Status Transaction is designed to emulate the process of providing an update on the status

of a particular set of trades. It is representative of a customer reviewing a summary of the recent
trading activity for one of their accounts.

1.3.10 Trade-Update

The Trade-Update Transaction is designed to emulate the process of making minor corrections or

updates to a set of trades. This is analogous to a customer or broker reviewing a set of trades, and
discovering that some minor editorial corrections are required. The various sets of trades are chosen
such that the work is representative of:

¶ reviewing general market trends

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 46 of 287

¶ reviewing trades for a p eriod of time prior to the most recent account statement

¶ reviewing past performance of a particular security

1.3.11 Data-Maintenance

The Data-Maintenance Transaction is designed to emulate the periodic modifications to data that is

mainly static and used for reference. This is analogous to updating data that seldom changes.

1.3.12 Trade-Cleanup

The Trade-Cleanup Transaction is used to cancel any pending or submitted trades from the database.

1.4 Model Description

1.4.1 Entity Relationships

1.4.1.1 Trading in TPC-E is done by Accounts. Accounts belong to Customers. Customers are serviced by
Brokers. Accounts trade Securities that are issued by Companies.

1.4.1.2 The total set of Securities that can be traded and the total set of Companies that issue Securities scales
along with the number of Custom ers. For each unit of 1,000 Customers, there are 685 Securities and 500
Companies (with Companies issuing 1 to 5 Securities, mostly common shares, but some preferred as
well).

1.4.1.3 All Companies belong to one of the 102 Industries. Each Industry belongs to one of the 12 market
Sectors.

1.4.1.4 Each Account picks its average of ten Securities to trade from across the entire range of Securities.

1.4.1.5 Securities to be traded can be identified by the security symbol or by the company name and security
issue.

1.4.2 Differences betwee n Customer T iers

1.4.2.1 The basic scaling unit of a TPC-E database is a set of 1,000 Customers. 20% of each 1,000 Customers
belong to Tier 1, 60% to Tier 2, and 20% to Tier 3. Tier 2 Customers trade twice as often as Tier 1
Customers. Tier 3 Customers trade three times as often as Tier 1 Customers. In general, customer
trading is non -uniform by tier within each set of 1,000 Customers.

1.4.2.2 Tier 1 Customers have 1 to 4 Accounts (average 2.5). Tier 2 Customers have 2 to 8 Accounts (average
5.0). Tier 3 Customers have 5 to 10 Accounts (average 7.5). Overall, there is an average of five Accounts
per Customer.

1.4.2.3 The minimum and maximum number of Securities that are traded by each Account varies by Customer
Tier and by the number of Accounts for each Customer. The average number of Securities traded per
Account is ten (so the average number of Securities traded per Customer is fifty). For each Account, the

same set of Securities is traded for both the initial database population and for any Test Run.

1.4.3 Customer Partitioning

1.4.3.1 TPC-E scales with Customers. It is conceivable that Customer information could be partitioned into
groups of related Customers. This is called Customer Partitioning. The advantage of Customer
Partitioning is that it increases locality of reference within each su b-group of Customers. Transactions
can be directed to a subset of Customers or to the entire set of Customers, in a defined proportion.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 47 of 287

1.4.4 Trade Types

1.4.4.1 Trade requests come in two basic flavors: Buy (50%) and Sell (50%). Those are further broken down into
Trade Types, depending on whether the request was a Market Order (60%) or a Limit Order (40%).

1.4.4.2 For Market Orders, the two trade types are Market -Buy (30%) and Market-Sell (30%). For Limit Orders,
the three trade types are Limit-Buy (20%), Limit-Sell (10%) and Stop-Loss (10%).

1.4.4.3 Market -Buy and Market -Sell are trade requests to buy and sell immediately at the current market price,
whatever price that may be. Limit -Buy is a request to buy only when the market price is at or below the
specified limit price. Limit -Sell is a request to sell only when the market price is at or above the
specified limit price. Stop -Loss is a request to sell only when (or if) the market price drops to or below
the specified limit price.

1.4.4.4 If the specified limit price has not been reached when the Limit Order is requested, it is considered an
Out-of-the-Money request and remains òPendingó until the specified limit price is reached. Reaching

the limit price is guaranteed to occur within 15 minutes based on EGenDriverMEE implementation

details. The act of noticing that a òPendingó limit request has reached or exceeded its specified limit
price and submitting it to the market exchange to be traded is known as triggering of the pending limit
order.

1.4.5 Effects of T rading on Holdings

1.4.5.1 For a given account and security, holdings will be either all long (positive quantities) or all short
(negative quantities).

1.4.5.2 Long positions represent shares of the security that were bought (purchased and paid for) by the
customer for the account. The customer owns the shares of the security and may sell them at a later
time (hopefully, for a higher price).

1.4.5.3 Short positions represent shares of the security that were borrowed from the broker (or Brokerage) and
were sold by the customer for the account. In the short sale case, the customer has received the funds
from that sell, but still has to cover the sell by later purchasing an equal number of shares (hopefully at
a lower price) from the market and returning those shares to the broker.

1.4.5.4 Before EGenLoader runs, there are no trades and no positions in any security for any account.

EGenLoader simulates running the benchmark for three hundred Business Days of initial trading, so

that the initial database will be ready for benchmark execution.

1.4.5.5 If the first trade for a security in an account is a buy, a long position will be established (positive
quantity in H OLDING row). Subsequent buys in the same account for the same security will add
holding rows with positive quantities. Su bsequent sells will reduce holding quantities or delet e holding
rows to satisfy the sell trade. All holdings may be eliminated, in which case the position becomes
empty. If the sell quantity still is not satisfied, the position changes from long to short (see below).

1.4.5.6 If the first trade for a security in an account is a sell, a short position will be established (negative
quantity in H OLDING row). Subsequent sells in the same account for the same security will add
holding rows with negative quantities. Subsequent buys will reduce holding quan tities (toward zero)
or delete holding rows to satisfy the buy trade. All holdings may be eliminated, in which case the
position becomes empty. If the buy quantity still is not satisfied, the position changes from short to
long.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 48 of 287

CLAUSE 2 -- DATABASE DESIGN , SCALING & POPULATION

2.1 Introdu ction

The TPC-E database is defined to consist of 33 separate and individual tables. The database schema is
organized into four sets of tables:

¶ Customer Tables: This set includes 9 tables that contain information about the customers of the

brokerage firm.

¶ Broker Tables: This set includes 9 tables that contain information about the brokerage firm and

broker related data.

¶ Market Tables: This set includes 11 tables that contain information about companies, markets,

exchanges, and industry sectors.

¶ Dimension Tables: This set includes 4 dimension tables that contain common information such as

addresses and zip codes.

The relationship between the tables and the requirements governing their use are outlined in the
remaining sections of Clause 2.

2.1.1 Definitions

2.1.1.1 A Primary Key is a single column or combination of columns that uniquely identifies a row. None of

the columns that are part of the Primary Key may be nullable. A table must have no more than one

Primary Key .

2.1.1.2 A Foreign Key (FK) is a column or combination of columns used to establish and enforce a link

between the data in two tables. A link is created between two tables by adding the column or columns

that hold one table's Primary Key values to the other table. This column becomes a Foreign Key in the

second table.

2.2 TPC-E Database Schema and Table Definitions

Details of the TPC-E database schema, the data type requirements, the required structure of each
individual table, the entity relationship between tables and the individual column restrictions are
defined in this clause.

2.2.1 Data Type Definitions

2.2.1.1 A Native Data Type is a built -in data type of the DBMS whose documented purpose is to store data of

a particular type described in the specification. For example, DATETIME must be implemented with a

built -in data type of the DBMS designed to store date-time information.

2.2.1.2 CHAR(n) means a character string that can hold up to n single-byte characters. Strings may be padded

with spaces to the maximum length . CHAR (n) must be implemented using a Native Data Type .

2.2.1.3 NUM(m[,n]) means an unsigned numeric value with at least m total Digits , of which n Digits are to

the right (after) th e decimal point. The data type must be able to hold all possible values which can be

expressed as NUM(m[,n]) . Omitting n, as in NUM(m) , indicates the same as NUM(m,0) . NUM must be

implemented using a Native Data Type .

2.2.1.4 SNUM(m[,n]) is identical to NUM(m[,n]) except that it can represent both positive and negative

values. SNUM must be implemented using a Native Data Type .

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 49 of 287

Comment: A SNUM data type may be used (at the S×ÖÕÚÖÙɀÚ discretion) anywhere a NUM data type is

specified.

2.2.1.5 ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).

ENUM and SENUM are identical to NUM and SNUM , respectively, except that they must be

implemented using a Native Data Type which provides exact representation of at least n Digits of

precision after the decimal place.

Comment: A numeric data type provides either exact or approximate representation of numeric value s.
For example, INTEGER and DECIMAL are exact numeric data types and REAL and FLOAT are
approximate numeric data types (based on ANSI SQL definitions).

2.2.1.6 BOOLEAN is a data type capable of holding at least two distinct values that represent FALSE and

TRUE.

Comment: The convention in this document, as well as the implementation of EGen, is that the value

zero (0) denotes FALSE and the value one (1) denotes TRUE.

2.2.1.7 DATE represents the data type of date with a granular ity of a day and must be able to support the

range of January 1, 1800 to December 31, 2199, inclusive. DATE must be implemented using a Native

Data Type .

Comment: A time component is not required but may be implemented.

2.2.1.8 DATETIME represents the data type for a date value that includes a time component. The date

component must meet all requirements of the DATE data type. The time component must be capable of

representing the range of time values from 00:00:00 to 23:59:59. Fractional seconds may be

implemented, but are not required. DATE TIME must be implemented using a Native Data Type .

2.2.1.9 BLOB(n) is a data type capable of holding a variable length binary object of n bytes.

2.2.1.10 BLOB_REF is a data type capable of referencing a BLOB(n) object that is stored outside the table on the

SUT.

2.2.2 Meta-type Definitions

The following meta -types are defined for ease of notation. These meta-types may be implemented
using the underlying data type on which each is defin ed. There is no requirement to implement the

meta-types as user-defined types in the DBMS . A meta-type may be implemented using a user-defined

type in the DBMS as long as the user-defined type incorporates a Native Data Type where required

and inherits the properties of that Native Data Type .

2.2.2.1 IDENT_T is defined as NUM(11) and is used to hold non-trade identifiers.

2.2.2.2 TRADE_T is defined as NUM(15) and is used to hold trade identifiers.

Trade identifiers h ave the following characteristics:

¶ They must be unique.

¶ They may be sparse.

¶ At load time they are generated by EGenLoader.

¶ At run time they are generated by Sponsor provided code.

¶ The EGenLoader code will not associate trade identifiers with Date/time or c ustomer identifier or

account identifiers. No assumptions may be made about trade identifier sequencing.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 50 of 287

2.2.2.3 FIN_AGG_T is defined as SENUM(15,2) and is used for holding aggregated financial data such as

revenue figures, valuations, and asset values.

2.2.2.4 S_PRICE_T is defined as ENUM (8,2) and is used for holding the value of a share price.

2.2.2.5 S_COUNT_T is defined as NUM(12) and is used for holding the aggregate count of shares used in

many tables.

2.2.2.6 S_QTY_T is defined as SNUM(6) and is used for holding the quantity of shares per individual trade.

2.2.2.7 BALANCE_T is defined as SENUM(12,2) and is used for holding aggregate account and transaction

related values such as account balances, total commissions, etc.

2.2.2.8 VALUE_T is defined as SENUM(10,2) and is used for holding non -aggregated transaction and security

related values such as cost, dividend, etc.

2.2.3 General Schema Items

The following table lists the category, prefix and the name for all TPC-E required tables in the
benchmark.

Category Table Name Table Prefix Definition

CUSTOMER

ACCOUNT_PERMISSION AP_ Clause 2.2.4.1

CUSTOMER C_ Clause 2.2.4.2

CUSTOMER_ACCOUNT CA_ Clause 2.2.4.3

CUSTOMER_TAXRATE CX_ Clause 2.2.4.4

HOLDING H_ Clause 2.2.4.5

HOLDING_HISTORY HH_ Clause 2.2.4.6

HOLDING_SUMMARY HS_ Clause 2.2.4.7

WATCH_ITEM WI_ Clause 2.2.4.8

WATCH_LIST WL_ Clause 2.2.4.9

BROKER

BROKER B_ Clause 2.2.5.1

CASH_TRANSACTION CT_ Clause 2.2.5.2

CHARGE CH_ Clause 2.2.5.3

COMMISSION_RATE CR_ Clause 2.2.5.4

SETTLEMENT SE_ Clause 2.2.5.5

TRADE T_ Clause 2.2.5.6

TRADE_HISTORY TH_ Clause 2.2.5.7

TRADE_REQUEST TR_ Clause 2.2.5.8

TRADE_TYPE TT_ Clause 2.2.5.9

MARKET

COMPANY CO_ Clause 2.2.6.1

COMPANY_COMPETITOR CP_ Clause 2.2.6.2

DAILY_MARKET DM_ Clause 2.2.6.3

EXCHANGE EX_ Clause 2.2.6.4

FINANCIAL FI_ Clause 2.2.6.5

INDUSTRY IN_ Clause 2.2.6.6

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 51 of 287

LAST_TRADE LT_ Clause 2.2.6.7

NEWS_ITEM NI_ Clause 2.2.6.8

NEWS_XREF NX_ Clause 2.2.6.9

SECTOR SC_ Clause 2.2.6.10

SECURITY S_ Clause 2.2.6.11

DIMENSION

ADDRESS AD_ Clause 2.2.7.1

STATUS_TYPE ST_ Clause 2.2.7.2

TAXRATE TX_ Clause 2.2.7.3

ZIP_CODE ZC_ Clause 2.2.7.4

2.2.3.1 The Primary Key references defined in this section must be maintained by the database during a Test

Run . The Primary Key s are marked with PK or PK+ in the Relations field for each table definition. PK

indicates that the column is the tableõs Primary Key while PK+ indicates that the column is part of a

composite (multi -column) Primary Key .

2.2.3.2 The Foreign Key references defined in this section must be maintained by the database dur ing a Test

Run . The Foreign Keys are marked with FK () or FK+ () in the Relations field for each table definition.

FK () indicates a single-column Foreign Key while FK+ () indicates that the column is part of a

composite (multi -column) Foreign Key . The table prefix enclosed in the parenthesis indicates the

target table for the Foreign Key reference.

2.2.3.3 The constraints defined in this section must be enforced by the database during a Test Run . The

constraints are listed in the Constraints column for each table definition.

Comment: Unless a Not Null constraint is present, a column must allow Null.

2.2.3.4 For each TPC-E required table, the columns can be implemented in any order, using any physical
representation available from the tested system that satisfies the schema data type requirements.

2.2.4 Customer Tables

These groups of tables contain information about customer related data.

2.2.4.1 ACCOUNT_PERMISSION

This table contains information about the access the customer or an individual other than the customer
has to a given customer account. Customer accounts may have trades executed on them by more than
one person.

Table Prefix: AP_

Column Name Data Type Constraints Relations Description

AP_CA_ID IDENT_T Not Null
PK+

FK (CA_)
Customer account identifier.

AP_ACL CHAR(4) Not N ull
Access Control List defining the
permissions the person has on the
customer account.

AP_TAX_ID CHAR(20) Not Null PK+
Tax identifier of the person with access
to the customer account.

AP_L_NAME CHAR (25) Not Null
Last name of the person with access to
the customer account.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 52 of 287

AP_F_NAME CHAR (20) Not Null
First name of the person with access to
the customer account.

2.2.4.2 CUSTOMER

This table contains information about the customers of the brokerage firm.

Table Prefix: C_

Column Name Data Type Constraints Relations Description

C_ID IDENT_T Not Null PK
Customer identifier, used internally to link
customer information .

C_TAX_ID CHAR(20) Not Null
Customerõs tax identifier, used externally
on communication to the customer. Is
alphanumeric.

C_ST_ID CHAR(4) Not Null FK (ST_)
Customer status type identifier. Identifies
if this customer is active or not.

C_L_NAME CHAR (25) Not Null Primary Customer's last name.

C_F_NAME CHAR (20) Not Null Primary Customer's first name.

C_M_NAME CHAR(1) Primary Customer' s middle name initial

C_GNDR CHAR(1)
Gender of the primary customer. Valid
values ôMõ for male or ôFõ for Female.

C_TIER NUM(1)
Not Null

 in 1,2,3

Customer tier: tier 1 accounts are charged
highest fees, tier 2 accounts are charged
medium fees, and tier 3 accounts have the
lowest fees.

C_DOB DATE Not Null Customerõs date of birth.

C_AD_ID IDENT_T Not Null FK (AD_)
Address identifier of the customer's
address.

C_CTRY_1 CHAR(3) Country code for Customer's phone 1.

C_AREA_1 CHAR(3) Area code for customerõs phone 1.

C_LOCAL_1 CHAR(10) Local number for customerõs phone 1.

C_EXT_1 CHAR(5) Extension number for Customerõs phone 1.

C_CTRY_2 CHAR(3) Country code for Customer's phone 2.

C_AREA_2 CHAR(3) Area code for Customerõs phone 2.

C_LOCAL_2 CHAR(10) Local number for Customerõs phone 2.

C_EXT_2 CHAR(5) Extension number for Customerõs phone 2.

C_CTRY_3 CHAR(3) Country code for Customer's phone 3.

C_AREA_3 CHAR(3) Area code for Customerõs phone 3.

C_LOCAL_3 CHAR(10) Local number for Customerõs phone 3.

C_EXT_3 CHAR(5) Extension number for Customerõs phone 3.

C_EMAIL_1 CHAR(50) Customer's e-mail address 1.

C_EMAIL_2 CHAR(50) Customer's e-mail address 2.

2.2.4.3 CUSTOMER_ACCOUNT

The CUSTOMER_ACCOUNT table contains account information related to accounts of each customer.

Table Prefix: CA_

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 53 of 287

Column Name Data Type Constraints Relations Description

CA_ID IDENT_T Not Null PK Customer account identifier.

CA_B_ID IDENT_T Not Null FK (B_)
Broker identifier of the broker who
manages this customer account.

CA_C_ID IDENT_T Not Null FK (C_)
Customer identifier of the customer who
owns this account.

CA_NAME CHAR(50)
Name of customer account. Example,
"Trish Hogan 401(k)".

CA_TAX_ST NUM(1)
Not Null

in 0,1,2

Tax status of this account: 0 means this
account is not taxable, 1 means this
account is taxable and tax must be
withheld, 2 means this account is taxable
and tax does not have to be withheld.

CA_BAL BALANCE_T Not Null Accountõs cash balance.

2.2.4.4 CUSTOMER _TAXRATE

The table contains two references per customer into the TAXRATE table. One reference is for
state/province tax; the other one is for national tax. The TAXRATE table contains the actual tax rates.

Table Prefix: CX_

Column Name Data Type Constraints Relations Description

CX_TX_ID CHAR(4) Not Null
PK+

FK (TX_)
Tax rate identifier.

CX_C_ID IDENT_T Not Null
PK+

FK (C_)

Customer identifier of a customer that
must pay this tax rate.

2.2.4.5 HOLDING

The table contains information about the customer accountõs security holdings.

Table Prefix: H_

Column Name Data Type Constraints Relations Description

H_T_ID TRADE_T Not Null
PK

FK (T_)
Trade Identifier of the trade.

H_CA_ID IDENT_T Not Null FK+ (HS_) Customer account identifier.

H_S_SYMB CHAR(15) Not Null FK+ (HS_) Symbol for the security held.

H_DTS DATETIME Not Null Date this security was purchased or sold.

H_PRICE S_PRICE_T
Not Null

> 0
 Unit purchase price of this security.

H_QTY S_QTY_T Not Null Quantity of this security held.

2.2.4.6 HOLDING_HISTORY

The table contains information about holding positions that were inserted, updated or deleted and
which trades made each change.

Table Prefix: HH_

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 54 of 287

Column Name Data Type Constraints Relations Description

HH_H_T_ID TRADE_T Not Null
PK+

FK (T_)

Trade Identifier of the trade that
originally created the holding row. This
is a Foreign Key to the TRADE table
rather then the HOLDING table because
the HOLDING row could be deleted.

HH_T_ID TRADE_T Not Null
PK+

FK (T_)

Trade Identifier of the current trade (the
one that last inserted, updated or deleted
the holding identified by HH_H_T_ID).

HH_ BEFORE_QTY S_QTY_T Not Null
Quantity of this security held before the
modifying trade. On initial insertion,
HH_BEFORE_QTY is 0.

HH_ AFTER_QTY S_QTY_T Not Null

Quantity of this security held after the
modifying trade. If the HOLDING row
gets deleted by the modifying trade,
then HH_AFTER_QTY is 0.

2.2.4.7 HOLDING_SUMMARY

The table contains aggregate information about the customer accountõs security holdings.

Table Prefix: HS_

Column Name Data Type Constraints Relations Description

HS_CA_ID IDENT_T Not Null
PK+

FK (CA_)
Customer account identifier.

HS_S_SYMB CHAR(15) Not Null
PK+

FK (S_)
Symbol for the security held.

HS_ QTY S_QTY_T Not Null Total quantity of this security held.

Comment: HOLDIN G_SUMMARY may be implemented as a view on HOLDING, in which case the

HOLDING Foreign Key references to HOLDING_SUMMARY are automatically met. However, the

HOLDING_SUMMARY Foreign Key references to CA_ and S_ must then be adopted and met by

HOLDING.

2.2.4.8 WATCH_ ITEM

The table contains list of securities to watch for a watch list.

Table Prefix: WI_

Column Name Data Type Constraints Relations Description

WI_WL_ID IDENT_T Not Null
PK+

FK (WL_)
Watch list identifier.

WI_S_SYMB CHAR(15) Not Null
PK+

FK (S_)
Symbol of the security to watch.

2.2.4.9 WATCH_LIST

The table contains information about the customer who created this watch list.

Table Prefix: WL_

Column Name Data Type Constraints Relations Description

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 55 of 287

WL_ID IDENT_T Not Null PK Watch list identifier.

WL_C_ID IDEN T_T Not Null FK (C_)
Identifier of customer who created this
watch list.

2.2.5 Broker Tables

This group of tables contains data related to the brokerage firm and brokers.

2.2.5.1 BROKER

The table contains information about brokers.

Table Prefix: B_

Column Name Data Type Constraints Relations Description

B_ID IDENT_T Not Null PK Broker identifier.

B_ST_ID CHAR(4) Not Null FK (ST_)
Broker status type identifier; identifies if
this broker is active or not.

B_NAME CHAR (49) Not Null Broker's name.

B_NUM_TRADES NUM(9) Not Null
Number of trades this broker has
executed so far.

B_COMM_TOTAL BALANCE_T Not Null
Amount of commission this broker has
earned so far.

2.2.5.2 CASH_TRANSACTION

The table contains information about cash transactions.

Table Prefix: CT_

Column Name Data Type Constraints Relations Description

CT_T_ID TRADE_T Not Null
PK

FK (T_)
Trade identifier.

CT_DTS DATETIME Not Null
Date and time stamp of when the
transaction took place.

CT_AMT VALUE _T Not Null Amount of the cash transaction.

CT_NAME CHAR(100)
Transaction name, or description: e.g.
òBuy Keebler Cookiesó, òCash from sale
of DuPont stockó.

2.2.5.3 CHARGE

The table contains information about charges for placing a trade request. Charges are based on the
customerõs tier and the trade type.

Table Prefix: CH_

Column Name Data Type Constraints Relations Description

CH_TT_ID CHAR(3) Not Null
PK+

FK (TT_)
Trade type identifier.

CH_C_TIER NUM(1)
Not Null

in 1,2,3
PK+ Customerõs tier.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 56 of 287

CH_CHRG VALUE _T
Not Null
>= 0

 Charge for placing a trade request.

2.2.5.4 COMMISSION_RATE

The commission rate depends on several factors: the tier the customer is in, the type of trade, the
quantity of securities traded, and the exchange that executes the trade.

Table Prefix: CR_

Column Name Data Type Constraints Relations Description

CR_C_TIER NUM(1)
Not Null

 in 1,2,3
PK+ Customerõs tier. Valid values 1, 2 or 3.

CR_TT_ID CHAR(3) Not Null
PK+

FK (TT_)

Trade Type identifier. Identifies the type
of trade.

CR_EX_ID CHAR(6) Not Null
PK+

FK (EX_)

Exchange identifier. Identifies the
exchange the trade is against.

CR_FROM_QTY S_QTY_T
Not Null

>= 0
PK+

Lower bound of quantity being traded to
match this commission rate.

CR_TO_QTY S_QTY_T

Not Null

>
CR_FROM_
QTY

Upper bound of quantity being traded to
match this commission rate.

CR_RATE NUM(5,2)
Not Null

>= 0

Commission rate. Ranges from 0.00 to
100.00. Example: 10% is 10.00.

2.2.5.5 SETTLEMENT

The table contains information about how trades are settled: specifically whether the settlement is on
margin or in cash and when the settlement is due.

Table Prefix: SE_

Column Name Data Type Constraints Relations Description

SE_T_ID TRADE_T Not Null
PK

FK (T_)
Trade identifier.

SE_CASH_TYPE CHAR(40) Not Null
Type of cash settlement involved:
possible values òMarginó, òCash
Accountó.

SE_CASH_DUE_DATE DATE Not Null
Date by which customer or brokerage
must receive the cash; date of trade plus
two days.

SE_AMT VALUE _T Not Null Cash amount of settlement.

2.2.5.6 TRADE

The table contains information about trades.

Table Prefix: T_

Column Name Data Type Constraints Relations Description

T_ID TRADE_T Not Null PK Trade identifier.

T_DTS DATETIME Not Null Date and time of trade.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 57 of 287

T_ST_ID CHAR(4) Not Null FK (ST_)
Status type identifier; identifies the
status of this trade.

T_TT_ID CHAR(3) Not Nu ll FK (TT_)
Trade type identifier; identifies the type
of his trade.

T_IS_CASH BOOLEAN
Not Null

in 0, 1

Is this trade a cash (1) or margin (0)
trade?

T_S_SYMB CHAR(15) Not Null FK (S_)
Security symbol of the security that was
traded.

T_QTY S_QTY_T
Not Null

>0
 Quantity of securities traded.

T_BID_PRICE S_PRICE_T
Not Null

> 0
 The requested unit price.

T_CA_ID IDENT_T Not Null FK (CA_) Customer account identifier.

T_EXEC_NAME CHAR (49) Not Null Name of the person executing the trade.

T_TRADE_PRICE S_PRICE_T
Unit price at which the security was
traded.

T_CHRG VALUE _T
Not Null

>= 0

Fee charged for placing this trade
request.

T_COMM VALUE _T
Not Null

>= 0

Commission earned on this trade; may
be zero.

T_TAX VALUE _T
Not Null

>= 0

Amount of tax due o n this trade; can be
zero. Whether the tax is withheld from
the settlement amount depends on the
customer account tax status.

T_LIFO BOOLEAN
Not Null

in 0, 1

If this trade is closing an existing position,
is it executed against the newest-to-
oldest account holdings of this security
(1=LIFO) or against the oldest-to-newest
account holdings (0=FIFO).

2.2.5.7 TRADE_HISTORY

The table contains the history of each trade transaction through the various states.

Table Prefix: TH_

Column Name Data Type Constraints Relations Description

TH_T_ID TRADE_T Not Null
PK+

FK (T_)

Trade identifier. This value will be used
for the corresponding T_ID in the
TRADE and SE_T_ID in the
SETTLEMENT table if this trade request
results in a trade.

TH_DTS DATETIME Not Null
Timestamp of when the trade history
was updated.

TH_ST_ID CHAR(4) Not Null
PK+

FK (ST_)
Status type identifier.

2.2.5.8 TRADE_REQUEST

The table contains information about pending limit trades that are waiting for a certain security price
before the trades are submitted to the market.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 58 of 287

Table Prefix: TR_

Column Name Data Type Constraints Relations Description

TR_T_ID TRADE_T Not Null
PK

FK (T_)

Trade request identifier. This value will
be used for processing the pending limit
order when it is subsequently triggered .

TR_TT_ID CHAR(3) Not Null FK (TT_)
Trade request type identifier; identifies
the type of trade.

TR_S_SYMB CHAR(15) Not Null FK (S_)
Security symbol of the security the
customer wants to trade.

TR_QTY S_QTY_T
Not Null

 > 0

Quantity of security the customer h ad
requested to trade.

TR_BID_PRICE S_PRICE_T
Not Null

> 0

Price the customer wants per unit of
security that they want to trade. Value of
zero implies the customer wants to trade
now at the market price

TR_B_ID IDENT_T Not Null FK (B_) Identifies the broker handling the trade .

2.2.5.9 TRADE_TYPE

The table contains a list of valid trade types.

Table Prefix: TT_

Column Name Data Type Constraints Relations Description

TT_ID CHAR(3) Not Null PK
Trade type identifier: Values are: òTMBó,
òTMSó, òTSLó, òTLSó, and òTLBó.

TT_NAME CHAR(12) Not Null
Trade type name. Examples òLimit
Buy", "Limit Sell", "Market Buy", "Market
Sell", òStop Lossó.

TT_IS_SELL BOOLEAN
Not Null

in 0, 1

1 if this is a òSelló type transaction. 0 if
this is a òBuyó type transaction.

TT_IS_MRKT BOOLEAN
Not Null

in 0, 1

1 if this is a market transaction that is
submitted to the market exchange
emulator immediately. 0 if this is a limit
transaction.

The contents of the TRADE_TYPE table are shown below for readability, since the TT_ID values are
used elsewhere in the specification .

TT_ID TT_NAME TT_IS_SELL TT_IS_MRKT

TLB Limit -Buy 0 0

TLS Limit -Sell 1 0

TMB Market -Buy 0 1

TMS Market -Sell 1 1

TSL Stop-Loss 1 0

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 59 of 287

2.2.6 Market Tables

This group of tables contains information related to the exchanges, companies, and securities that create
the Market.

2.2.6.1 COMPANY

The table contains information about all companies with publicly traded securities.

Table Prefix: CO_

Column Name Data Type Constraints Relations Description

CO_ID IDENT_T Not Null PK Company identifier.

CO_ST_ID CHAR(4) Not Null FK (ST_)
Company status type identifier.
Identifies if this company is active or
not.

CO_NAME CHAR(60) Not Null Company name.

CO_IN_ID CHAR(2) Not Null FK (IN_)
Industry identifier of the industry the
company is in.

CO_SP_RATE CHAR(4) Not Null
Company's credit rating from Standard
& Poor.

CO_CEO CHAR (46) Not Null
Name of Company's Chief Executive
Officer.

CO_AD_ID IDENT_T Not Null FK (AD_) Address identifier.

CO_DESC CHAR(150) Not Null Company descriptio n.

CO_OPEN_DATE DATE Not Null Date the company was founded.

2.2.6.2 COMPANY_COMPETITOR

This table contains information for the competitors of a given company and the industry in which the
company competes.

Table Prefix: CP_

Column Name Data Type Constraints Relations Description

CP_CO_ID IDENT_T Not Null
PK+

FK (CO_)
Company identifier.

CP_COMP_CO_ID IDENT_T Not Null
PK+

FK (CO_)

Company identifier of the competitor
company for the specified industry.

CP_IN_ID CHAR(2) Not Null
PK+

FK (IN_)

Industry identifi er of the industr y in
which the CP_CO_ID company
considers that the CP_COMP_CO_ID
company competes with it. This may not
be either companyõs primary industry.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 60 of 287

2.2.6.3 DAILY_MARKET

The table contains daily market statistics for each security, using the closing market data from the last

completed trading day. EGenLoader will load this table with data for each security for the period

starting 3 January 2000 and ending 31 December 2004.

Table Prefix: DM_

Column Name Data Type Constraints Relations Description

DM_DATE DATE Not Null PK+ Date of last completed trading day.

DM_S_SYMB CHAR(15) Not Null
PK+

FK (S_)
Security symbol of this security.

DM_CLOSE S_PRICE_T Not Null Closing price for this security.

DM_HIGH S_PRICE_T Not Null Day's High price for this security.

DM_LOW S_PRICE_T Not Null Day's Low price for this security.

DM_VOL S_COUNT_T Not Null Day's volume for this security.

2.2.6.4 EXCHANGE

The table contains information about financial exchanges.

Table Prefix: EX_

Column Name Data Type Constraints Relations Description

EX_ID CHAR(6) Not Null PK
Exchange identifier. Values are, "NYSE",
"NASDAQ", "AMEX", óPCXó.

EX_NAME CHAR(100) Not Null Exchange name.

EX_NUM_SYMB NUM(6) Not Null
Number of securities traded on this
exchange.

EX_OPEN NUM(4) Not Nul l
Exchange Daily start time expressed in
GMT.

EX_CLOSE NUM(4) Not Null
Exchange Daily stop time, expressed in
GMT.

EX_DESC CHAR(150) Description of the exchange.

EX_AD_ID IDENT_T Not Null FK (AD_) Mailing address of exchange.

2.2.6.5 FINANCIAL

The table contains information about a company's quarterly financial reports. EGenLoader will load

this table with financial information for each company for the Quarters starting 1 J anuary 2000 and
ending with the quarter that starts 1 October 2004.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 61 of 287

Table Prefix: FI_

Column Name Data Type Constraints Relations Description

FI_CO_ID IDENT_T Not Null
PK+

FK (CO_)
Company identifier.

FI_YEAR NUM(4) Not Null PK+ Year of the quarter end.

FI_QTR NUM(1)
Not Null

in 1,2,3,4
PK+

Quarter number that the financial
informat ion is for: valid values 1, 2, 3,
4.

FI_QTR_START_DATE DATE Not Null Start date of quarter.

FI_REVENUE FIN_AGG_T Not Null Reported revenue for the quarter.

FI_NET_EARN FIN_AGG_T Not Null Net earnings reported for the quarter.

FI_BASIC_EPS VALUE_T Not Null
Basic earnings per share reported for
the quarter.

FI_DILUT_EPS VALUE_T Not Null
Diluted earnings per share reported
for the quarter.

FI_MARGIN VALUE_T Not Null
Profit divided by revenues for the
quarter.

FI_INVENTORY FIN_AGG_T Not Null
Value of inventory on hand at the end
of the quarter.

FI_ASSETS FIN_AGG_T Not Null
Value of total assets at the end of the
quarter.

FI_LIABILITY FIN_AGG_T Not Null
Value of total liabilities at the end of
the quarter.

FI_OUT_BASIC S_COUNT_T Not Null
Average number of common shares
outstanding (basic).

FI_OUT_DILUT S_COUNT_T Not Null
Average number of common shares
outstanding (diluted).

2.2.6.6 INDUSTRY

The table contains information about industries. Used to categorize which industries a company is in.

Table Prefix: IN_

Column Name Data Type Constraints Relations Description

IN_ID CHAR(2) Not Null PK Industry identifier.

IN_NAME CHAR(50) Not Null
Industry name. Examples: "Air Travel",
"Air Cargo", "Software", "Consumer
Banking", "Merchant Banking", etc.

IN_SC_ID CHAR(2) Not Null FK (SC_)
Sector identifier of the sector the
industry is in.

2.2.6.7 LAST_TRADE

The table contains one row for each security with the latest trade price and volume for each security.

Table Prefix: LT_

Column Name Data Type Constraints Relations Description

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 62 of 287

LT_S_SYMB CHAR(15) Not Null
PK

FK (S_)
Security symbol.

LT_DTS DATETIME Not Null
Date and timestamp of when this row
was last updated.

LT_PRICE S_PRICE_T Not Null Latest trade price for this security.

LT_OPEN_PRICE S_PRICE_T Not Null Price the security opened at today.

LT_VOL S_COUNT_T Not Null
Volume of trading on the market for this
security so far today. Value initialized to
0.

2.2.6.8 NEWS_ITEM

The table contains information about news items of interest.

Table Prefix: NI_

Column Name Data Type Constraints Relations Description

NI_ID IDENT_T Not Null PK News item identifier.

NI_HEADLINE CHAR(80) Not Null News item headline.

NI_SUMMARY CHAR(255) Not Null News item summary.

NI_ITEM
BLOB(100000)
or BLOB_REF

Not Null
Large object containing the news item or
links to the story.

NI_DTS DATETIME Not Null
Date and time the news item was
published.

NI_SOURCE CHAR(30) Not Null Source of the news item.

NI_AUTHOR CHAR(30)
Author of the news item. May be null if
the news item came off a wire service.

2.2.6.9 NEWS_XREF

The table contains a cross-reference of news items to companies that are mentioned in the news item.

Table Prefix: NX_

Column Name Data Type Constraints Relations Description

NX_NI_ID IDENT_T Not Null
PK+

FK (NI_)
News item identifier.

NX_CO_ID IDENT_T Not Null
PK+

FK (CO_)

Company identifier of the company (or
one of the companies) mentioned in the
news item.

2.2.6.10 SECTOR

The table contains information about market sectors.

Table Prefix: SC_

Column Name Data Type Constraints Relations Description

SC_ID CHAR(2) Not Null PK Sector identifier.

SC_NAME CHAR(30) Not Null
Sector name. Examples: òEnergyó,
òMaterialsó, òIndustrialsó, òHealth Care,
etc.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 63 of 287

2.2.6.11 SECURITY

This table contains information about each security tr aded on any of the exchanges.

Table Prefix: S_

Column Name Data Type Constraints Relations Description

S_SYMB CHAR(15) Not Null PK
Security symbol used to identify the
security on "ticker".

S_ISSUE CHAR(6) Not Null
Security issue type. Example:
"COMMON", "PERF_A", "PERF_B",
etc.

S_ST_ID CHAR(4) Not Null FK (ST_)
Security status type identifier.
Identifies if this security is active or
not.

S_NAME CHAR(70) Not Null Security name.

S_EX_ID CHAR(6) Not Null FK (EX_)
Exchange identifier of the exchange
the security is traded on.

S_CO_ID IDENT_T Not Null FK (CO_)
Company identifier of the company
this security is issued by.

S_NUM_OUT S_COUNT_T Not Null
Number of shares outstanding for this
security.

S_START_DATE DATE Not Null Date security first started trading.

S_EXCH_DATE DATE Not Null
Date security first started trading on
this exchange.

S_PE VALUE_T Not Null
Current share price to earnings per
share ratio.

S_52WK_HIGH S_PRICE_T Not Null Security share price 52-week high.

S_52WK_HIGH_DATE DATE Not Null
Date of security share price 52-week
high.

S_52WK_LOW S_PRICE_T Not Null Security share price 52-week low.

S_52WK_LOW_DATE DATE Not Null
Date of security share price 52-week
low.

S_DIVIDEND VALUE_T Not Nul l
Annual Dividend per share amount.
May be zero, is not allowed to be
negative.

S_YIELD NUM(5,2) Not Null
Dividend to share price ratio. Value is
in percent. Example 10.00 is 10%

2.2.7 Dimension Tables

This group of tables includes 4 dimension tables that contain common information such as addresses
and zip codes.

2.2.7.1 ADDRESS

This table contains address information.

Table Prefix: AD_

Column Name Data Type Constraints Relations Description

AD_ID IDENT_T Not Null PK Address identifier.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 64 of 287

AD_LINE1 CHAR(80) Address Line 1.

AD_LINE2 CHAR(80) Address Line 2.

AD_ZC_CODE CHAR(12) Not Null FK (ZC_) Zip or postal code.

AD_CTRY CHAR(80) Country.

2.2.7.2 STATUS_TYPE

This table contains all status values for several different status usages. Multiple tables reference this
table to obtain their status values.

Table Prefix: ST_

Column Name Data Type Constraints Relations Description

ST_ID CHAR(4) Not Null PK Status type identifier.

ST_NAME CHAR(10) Not Null
Status value. Examples: "Active",
"Completed", "Pending", òCanceledó and
"Submittedó.

The contents of the STATUS_TYPE table are shown below for readability, since the ST_ID values are
used elsewhere in the specification .

ST_ID ST_NAME

ACTV Active

CMPT Completed

CNCL Canceled

PNDG Pending

SBMT Submitted

2.2.7.3 TAXRATE

The table contains information about tax rates.

Table Prefix: TX_

Column Name Data Type Constraints Relations Description

TX_ID CHAR(4) Not Null PK
Tax rate identifier. Format - two letters
followed by one digit. Examples: ôUS1õ,
ôCA1õ.

TX_NAM E CHAR(50) Not Null Tax rate name.

TX_RATE NUM(6,5)
Not Null

>= 0

Tax rate, between 0.00000 and 1.00000,
inclusive.

2.2.7.4 ZIP_CODE

The table contains zip and postal codes, towns, and divisions that go with them.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 65 of 287

Table Prefix: ZC_

Column Name Data Type Constraints Relations Description

ZC_CODE CHAR(12) Not Null PK Postal code.

ZC_TOWN CHAR(80) Not Null Town.

ZC_DIV CHAR(80) Not Null State or province or county.

2.3 Implementation Rules

2.3.1 The physical clustering of records within the database is allowed.

2.3.2 All TPC-E required tables must have the properly scaled number of rows as defined by the database
population requirements in Clause 2.6.

2.3.3 Table Partitioning

2.3.3.1 Horizontal partitioning of tables is allowed. Groups of rows from a table may be assigned to different

files, disks, or areas. If implemented, the details of such partitioning must be report ed in the Report .

2.3.3.2 Vertical partitioning of tables is allowed. Groups of columns of one table may be assigned to files,
disks, or areas different from those storing the other columns of that table. If implemented, the details

of such partitioning must be reported in the Report (see Clause 2.5 for limitations).

2.3.3.3 Assignment of data to different files, disks, or areas, not based on knowledge of the logical structure of
the data (e.g., knowledge of row or column boundaries), is not considered partitioning. For example,
distribution or strip ing over multiple disks of a physical file whi ch stores one or more logical tables is
not considered partitioning as long as this distribution is done by the hardware or software without
knowledge of the logical structure stored in the physical file.

2.3.4 Replication is allowed for all tables. All copies of TPC-E tables that are replicated must meet all
requirements for atomicity, consistency, and isolation as defined in Clauses 7.2, 7.3 and 7.4. If

implemented, the details of such replication must be reported in the Report .

Comment: Only one copy of a replicated TPC-E table needs to meet the Durability requirements defined

in Clause 7.5.

2.3.5 Column s may be added and/or duplicated from one TPC-E table to another as long as these changes
do not improve performance.

2.3.6 Each TPC-E column, as described by the table definitions in Clause 2.2, must be logically discrete and

independently accessible by the DBMS . For example, ADDRESS.AD_LINE1 and

ADDRESS.AD_LINE2 are not allowed to be implemente d as two sub-parts of a single column
ADDRESS.AD_LINE.

2.3.7 Each TPC-E column, as described by the table definitions in Clause 2.2, must be accessible by the

DBMS as a single column. For example, NEWS_ITEMS.NI_ITEM is not allowed to be implemented as

two separate columns NEWS_ITEMS.NI_ITEM1 and NEWS_ITEMS.NI_ITEM2.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 66 of 287

2.3.8 The Primary Key of each table must not directly represent the physical disk addresses of the row or any

offsets thereof. The Application is not allowed to reference rows using relative addressing since they

are simply offsets from the beginning of the storage space. This does not preclude hashing schemes or
other file organi zations that have provisions for adding, deleting, and modifying records in the
ordinary course of processing.

Comment 1: It is the intent of this clause that the Application Program (see Clause 1.2) executing the

transaction, or submitting the transaction request, not use physical identifiers, but logical identifiers for
all accesses, and contain no user written code which translates or aids in the translation of a logical key
to the location within the table of the associated row or rows. For example, it is not legitimate for the

Application to build a "translation table" of logical -to-physical addresses and use it to enhance

performance.

Comment 2: Internal record or row identifiers, for example, Tuple IDs or cursors, may be used under the
following condition. For each transaction executed, initial access to any row must be via the column(s)

specified in the transaction Profile and no other columns. Initial access includes insertion, deletion,

retrieval, and update of any ro w.

2.3.9 While inserts and deletes are not performed on all tables, the system must not be configured to take
special advantage of this fact during the test. Although inserts are inherently limited by the storage
space available on the configured system, there must be no restriction on inserting in any of the non-

Growing Tables a minimum number of rows equal to 5% of the table cardinality.

Comment: It is required that the space for the additional 5% table cardinality (and corresponding growth

in associated User-Defined O bjects, such as indices) be configured for the Test Run and priced (as

Fixed Space per Clause 6.6.6.3) accordingly. For systems where space is configured and dynamically

allocated at a later time, this space must be considered as allocated and included as Fixed Space when

priced.

2.3.10 The implementation of the BLOB object must satisfy the following properties:

¶ Changes to the data in the object must be under the same transactional control as the changes to the
objects of any other type.

¶ Recovery after Catastrophic failure must be capable of restoring all objects, including BLOBs, to the

same point in time.

¶ The object, and any associated references to it, must be treated as a unit with respect to atomicity.

Comment: The implementation of BLOB in the NEWS_ITEM table may be implemented either by
specific inclusion of the BLOB in the table or by use of a reference to a BLOB object stored elsewhere on

the System Under Test .

2.3.11 User-Defined Objects

Any object defined in the database is considered a User-Defined Object , except for the following:

¶ a TPC-E Table (see clause 2.2.3)

¶ a required Primary Key (see clause 2.2.3.1)

¶ a required Foreign Key (see clause 2.2.3.2)

¶ a required constraint (see clause 2.2.3.3)

¶ Database M etadata

2.3.11.1 There are no restrictions on User-Defined Objects , provided that:

¶ all Transaction and Frame implementation rules from clause 3.2 are met

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 67 of 287

¶ all ACID requirements in clause 7 are met

2.4 Integrity Ru les

2.4.1 In any Committed state, the Primary Key values must be unique within each table. For example, in the

case of a horizontally partitioned table, Primary Key values of rows across all partitions must be

unique.

2.4.2 In any Committed state, no ill-formed rows may exist in the database. An ill-formed row occurs when

the value of any column cannot be determined. For example, in the case of a vertically partitioned
table, a row must exist in all the partitions.

2.4.3 Referential Integrity (RI) must be enforced by the database for all Foreign Key (FK) and Primary Key

(PK) relations defined between TPC-E tables.

Comment: Referential Integrity preserves the relationship of data between tables, by restricting actions

performed on Primary Keys and Foreign Keys in a table. Referential Integrity prevents removing

rows containing Primary Keys that are referenced by Foreign Keys in other tables in the database

without also removing the rows with corresponding/referencing Foreign Keys . Referenti al Integrity

also prevents adding rows containing Foreign Keys that refer to Primary Keys whose rows are not

already present in the database. Referential Integrity does not allow modifications to Primary Key

columns of rows that are referenced by Foreign K eys in other tables in the database without also

modifying the corresponding/referencing Foreign Keys to be equal to the new Primary Key .

2.5 Data Access Transparency Requirements

Data Access Transparency is the property of the system that removes from the Application Program

any knowledge of the location and access mechanisms of partitioned data. An implementation that
uses vertical and/or horizontal partitioning must meet the requirements for transparent data access
described here.

No finite series of tests can prove that the system supports complete data access transparency. The
requirements below describe the minimum capabilities needed to establish that the system provides
transparent data access.

Comment: The intent of this clause is to require that access to physically and/or logically partitioned
data be provided directly and transparently by services implemented by commercially available layers

below the Application Program such as the data/file manager (DBMS), the Operating System , the

hardware, or any combination of these.

2.5.1 Each of the tables described in Clause 2.2 (and any additional tables used in the implementation of the

Transactions) must be identifiable by names that have no relationship to the partiti oning of tables. All

data manipulation operations in the Application Program (see Clause 1.2) must use only these names.

2.5.2 The system must prevent any data manipulation operation performed using the names describ ed in
Clause 2.5.1 that would result in a violation of the integrity rules (see Clause 2.4). For example: the
system must prevent a non-TPC-E application from committi ng the insertion of a row in a vertically
partitioned table unless all partitions of that row have been inserted.

2.5.3 Using the names which satisfy Clause 2.5.1, any arbitrary non -TPC-E application must be able to
manipulate any set of rows or columns:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 68 of 287

¶ Identifiable by any arbitrary condition supported by the underlying DBMS

¶ Using the names described in Clause 2.5.1 and using the same data manipulation semantics and
syntax for all tables.

For example, the semantics and syntax used to update an arbitrary set of rows in any one table must
also be usable when updating another arbitrary set of rows in any other table.

Comment: The intent is that the TPC-E Application Program uses general-purpose mechanisms to

manipulate data in the database.

2.6 TPC-E Database Size and Table Cardinality

The transaction load generated to service customer accounts and to interact with financial markets
drives the throughput of the TPC -E benchmark. To increase the throughput, more customers and their
associated data must be configured. The cardinality of the CUSTOMER table is the basis of the TPC-E
database size and scaling. CUSTOMER table cardinality is determined based on the transaction
throughput met ric requirements defined in Clause 6.6.7.

Configured Customers means the number of customers (with corresponding rows in the associated

TPC-E tables) configured at database generation.

The TPC-E benchmark has three types of sizing requirements for its tables:

¶ Fixed Tables : These tables always have the same number of rows regardless of the database size

and transaction throu ghput. For example, TRADE_TYPE has five rows.

¶ Scaling Tables : These tables each have a defined cardinality that has a constant relationship to the

cardinality of the CUSTOMER table. Transactions may update rows from these tables, but the table

sizes remain constant.

¶ Growing Tables : These tables each have an initial cardinality that has a defined relationship to the

cardinality of the CUSTOMER table. However, the cardinality increases with new growth during
the benchmark run at a rate that is proportional to transaction throughput rates.

Comment: The HOLDING and HOLDING_SUMMARY tables are considered Growing Table s. Rows

are added and deleted from the HOLDING and HOLDING_SUMMARY tables during the benchmark

execution, but the average size of the tables continues to grow at an insignificant rate during Steady

State. The TRADE_REQUEST table is also considered a Growing Table, even though its average size

is a fixed relationship to the transaction throughput rates and not to the cardinality o f the CUSTOMER
table.

2.6.1 Initial Database Size Requirements

2.6.1.1 The test database must be initially populated using data generated by EGenLoader. By definition, the

TPC provided EGenLoader produces the correct number of rows for each table. The test database must

be built including the initial database population and User-Defined Objects present immediately prior

to the first Test Run.

2.6.1.2 The initial database population is based on the number of customers. The benchmark Sponsor selects

the CUSTOMER table cardinality, based on the desired transaction throughput. Clause 6.6.8.2 defines

the Nominal Throughput for a given number of rows in the CUSTOMER table. The minimum number

of rows for the CUSTOMER table is 5000. The size of the CUSTOMER table can be increased in

increments of 1000 customers. A set of 1000 customers is known as a Load Unit .

2.6.1.3 The Growing Tables are populated with an initial set of rows sufficient to enable all benchmark

Transactions to run.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 69 of 287

2.6.1.4 The Scale Factor is the number of required customer rows per single Transaction s-Per-Second-E

(tpsE). The Scale Factor for Nominal Throu ghput is 500.

2.6.1.5 The Initial Trade Days (ITD) is the number of Business Days used to populate the database. This

population is made of trade data that would be generated by the SUT when running at the Nominal

Throughput for the specified number of Business Days. The number of Initial Trade Days is 300.

2.6.1.6 The number of Load Units configured must be equal to the number of Load Units actually accessed

during the Test Run.

2.6.1.7 The following variables are used as an aid in defining TPC-E table cardinalities:

Variable Table Description

customers CUSTOMER Number of rows in the CUSTOMER table.

accounts CUSTOMER_ACCOUNT
Number of rows in the CUSTOMER_ACCOUNT table. Equal to 5 *

customers.

trades TRADE

Number of trade rows in the TRADE table. The trades number is

equal to 17280 * customers (300 days of initial population at SF =

500).

settled SETTLEMENT
Number of settled trade rows in the SETTLEMENT table. The settled

number is equal to trades.

companies COMPANY
Number of rows in the COMPANY table. 500 companies per Load
Unit of 1000 customers.

securities SECURITY
Number of rows in the SECURITY table. 685 securities per Load Unit
of 1000 customers.

2.6.1.8 The following rules are used by EGenLoader to calculate the cardinalities of the Scaling Tables and

Growing Tables. The EGen package uses random number generators to set the number of rows for

relationships such as securities per account and, as a result, the cardinality of some TPC-E tables can
only be approximated.

Table Variable Used Rule

ACCOUNT_PERMISSION accounts

60% have just the customer as the executor
38% have the customer and 1 other executor
2% have the customer and 2 other executors

Avg. is ~1.42 * accounts

ADDRESS customers companies + EXCHANGE(4) + customers

BROKER customers 0.01 * customers (or 1 broker per 100 customers)

CASH_TRANSACTION settled ~0.92 * settled (84% of buys and 100% of sells are cash)

COMPANY customers 500 * (customers/1000)

COMPANY_COMPETITOR companies 3 * companies

CUSTOMER_ACCOUNT customers 5 * customers

CUSTOMER_TAXRATE customers 2 * customers

DAILY_MARKET securities
securities * 1,305 (5 years of 5-day work weeks with
two leap years)

FINANCIAL companies companies * 20 quarters (5 years)

HOLDING settled ~0.051 * settled (assumes ITD = 300 and SF = 500)

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 70 of 287

HOLDING_HISTORY settled ~1.340 * settled (assumes ITD = 300 and SF = 500)

HOLDING_SUMMARY accounts ~9.956 * accounts (assumes ITD = 300 and SF = 500)

LAST_TRADE securities 1 * securities

NEWS_ITEM companies 2 * companies

NEWS_XREF companies 2 * companies

SECURITY customers 685 * (customers/1000)

SETTLEMENT settled 1 * settled

TRADE customers
17280 * customers = ((ITD * 8 * 3600) / SF) *

customers

TRADE_HISTORY settled

~((2 rows per market trade) * 0.6)
 +
 ((3 rows per limit trade) * 0.4)

Av erage is (2.4 * settled)

TRADE_REQUEST 0

WATCH_LIST customers Each customer has one watch list (1 * customers)

WATCH_ITEM customers Av erage=100 items per watch list * customers

2.6.1.9 The following list contains the cardinality of Fixed Tables.

Fixed Tables Cardinality Cardinality Formula

CHARGE 15 5 trade types * 3 customer tiers

COMMISSION_RATE 240 4 rates * 4 exchanges * 5 trade types * 3 customer tiers

EXCHANGE 4 4 exchanges

INDUSTRY 102 102 industries

SECTOR 12 12 sectors

STATUS_TYPE 5 5 status types

TAXRATE 320 320 tax rates

TRADE_TYPE 5 5 trade types

ZIP_CODE 14,741 14,741 zip codes

2.6.1.10 The following list contains the cardinality of the Scaling Tables.

Scaling Tables Cardinality Cardinality Formula

CUSTOMER 5,000 Scaled based on transaction rate

CUSTOMER_TAXRATE 10,000 customers * 2

CUSTOMER_ACCOUNT 25,000 accounts = (5 * customers)

ACCOUNT_PERMISSION ~35,500 accounts * (Average of ~1.42 permissions per account)

ADDRESS 7,504 companies + EXCHANGE (4) + customers

BROKER 50 customers * 0.01

COMPANY 2,500 500 * (customers/1000)

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 71 of 287

COMPANY_COMPETITOR 7,500 companies * 3

DAILY_MARKET 4,469,625 securities * 1,305

FINANCIAL 50,000 companies * 20

LAST_TRADE 3,425 securities * 1

NEWS_ITEM 5,000 companies * 2

NEWS_XREF 5,000 companies * 2

SECURITY 3,425 685 * (customers/1000)

WATCH_LIST 5,000 customers * 1

WATCH_ITEM ~ 500,000 customers * (Average of ~100 securities per watch list)

2.6.1.11 The following list shows the initial cardinality of the Growing Tables.

Growing Tables Cardinality Cardinality Formula

CASH_TRANSACTION ~79,488,000 ~0.92 * settled (84% of buys & 100% of sells are cash)

HOLDING ~4,406,400 ~0.051 * settled (assumes ITD = 300 and SF = 500)

HOLDING_HISTORY ~115,776,000 ~1.340 * settled (assumes ITD = 300 and SF = 500)

HOLDING_SUMMARY ~248,900 ~9.956 * accounts

SETTLEMENT 86,400,000 1 * settled

TRADE 86,400,000 ((ITD * 8hr/day * 3600sec/hr * customers) / SF)

TRADE_HISTORY ~207,360,000 ~(2.4 * trades)

TRADE_REQUEST 0 0

2.6.2 Test Run Database Size Requirements

2.6.2.1 The following list shows the increase in rows per second for the Growing Tables (except for

TRADE_REQUEST) during a Test Run. The rate of growth may decline after running for a large

number of days.

Table Name Cardinality Formula

CASH_TRANSACTION ~0.92 * (customers/ SF)

HOLDING ~0.044 * (customers/ SF)

HOLDING_HISTORY ~1.343 * (customers/ SF)

SETTLEMENT 1 * (customers/ SF)

TRADE 1 * (customers/ SF)

TRADE_HISTORY ~2.4 * (customers/ SF)

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 72 of 287

The TRADE_REQUEST table is empty at the start of a Test Run and does grow at first during runtime,

but it soon reaches a cardinality that is dependent on recent performance and not on the length of the

Test Run. The approximate cardinality of TRADE_REQUEST during the Steady State portion of a Test

Run can be estimated as ~60 rows * Measured Throughput (see Clause 6.6.8.4). Considerable variation

in this cardinality is possible both while running and at the end of a Test Run.

2.6.2.2 The test database must be built to sustain the Reported Throughput during a Business Day. This

means that test database must have a !ÜÚÐÕÌÚÚɯ#ÈàɀÚ worth of additional space for data, index and log

online. This excludes performing on the database any operation that does not occur during the

Measurement Interval .

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 73 of 287

CLAUSE 3 -- TRANSACTIONS

3.1 Introduction

The core of each TPC-E Transaction runs on the Database Server, but the logic of the Transaction

interacts with several components of the benchmark environment. This section defines all aspects of

the Transactions, including side effects on other components of the benchmark environment.

3.1.1 Definitions

3.1.1.1 A Transaction is composed of EGenTxnHarness and of the invocation of one or more Frames. The

Trade-Cleanup Transaction is an exception. Sponsors may but do not have to run the Trade-Cleanup

Transaction from EGenTxnHarness .

3.1.1.2 The EGenTxnHarness is the TPC provided transaction logic, which the Sponsor is not allowed to alter.

The EGenTxnHarness is implemented in a manner that precludes the consolidation of multiple Frames

within a Transaction .

3.1.1.3 A Frame is the Sponsor implemented Transaction logic, which is invoked as a unit of execution by the

EGenTxnHarness . The database interactions of a Transaction are all initiated from within its Frames.

DBMS

TPC-E Transaction

Frame N

Frame 1

EGenTxnHarness

TPC-E Logic

TPC-E Logic

TPC-E Logic

Frame Call

Frame Return

Frame Call

Frame Return

TPC-E Logic

Input from Driver

Output to Driver

Legend

TPC Provided

Sponsor Provided

Commercial Product

DBMS

TPC-E Transaction

Frame N

Frame 1

EGenTxnHarness

TPC-E Logic

TPC-E Logic

TPC-E Logic

Frame Call

Frame Return

Frame Call

Frame Return

TPC-E Logic

Input from Driver

Output to Driver

DBMS

TPC-E Transaction

Frame N

Frame 1

EGenTxnHarness

TPC-E Logic

TPC-E Logic

TPC-E Logic

Frame Call

Frame Return

Frame Call

Frame Return

TPC-E Logic

Input from Driver

Output to Driver

Legend

TPC Provided

Sponsor Provided

Commercial Product

LegendLegend

TPC Provided

Sponsor Provided

Commercial Product

TPC Provided

Sponsor Provided

Commercial Product

Figure 3.a - Frames Interfacing with the Harness and the Database

3.1.1.4 A Database Transaction is an ACID unit of work.

3.1.2 Database Footprint Defin ition

This Clause describes the format used to specify the Database Footprint of each Transaction in this

benchmark.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 74 of 287

3.1.2.1 The Database Footprint of a Transaction is the set of required database interactions to be executed by

that Transaction .

3.1.2.2 Each Database Footprint is presented in a tabular format where the columns specify the following:

¶ The first column denotes either one of the database tables defined in Clause 2.2 or the word s

òTransaction Controló that denotes the entire Transaction . The last row defines the overall

Transaction .

¶ The second column denotes one of the following:

o A specific column name of a database table as defined in Clause 2.2.

o The string ò# rowsó that specifies the exact number of rows containing all columns of a

database table. For example, ò2 rowsó indicates two complete rows of a database table.

o The string òRow(s)ó that specifies a variable number of rows containing all columns of a

database table.

¶ The remaining columns correspond with each of the Frames of the Transaction and contain the

database interactions or Transaction control operations required to be executed in that Frame.

3.1.2.3 The following table is an examp le of the Database Footprint of a Transaction .

Example Database Footprint

Table Column
Frame

1 2* 3*

CUSTOMER_ACCOUNT

CA_BAL Reference

CA_C_ID Return

CA_TAX_ST Return

HOLDING

H_PRICE Return

H_QTY Modify

Row(s) Remove *

1 row Ad d *

TRADE_HISTORY 1 row Add

Transaction Control Start Rollback * Commit

For the last row of the Database Footprint where the word s òTransaction Controló appears, each

column corresponds to one of the transaction Frames. The content of the columns denote which

Transaction control operations occur in that Frame. The possible Transaction control operations are as

follows:

¶ The word òStartó indicates that the specified Frame contains a control operation that starts a

Database Transaction . The start of a Database Transaction can only occur in a Frame where

the word òStartó is specified.

¶ The word òRollbackó indicates that the specified Frame contains a control operation that rolls

back the Database Transaction . The explicit rolling back of a Database Transaction can only

occur in a Frame where the word òRollbackó is specified.

The word òCommitó indicates that the specified Frame contains a control operation that commits a

Database Transaction .

Commit : a control operation that:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 75 of 287

¶ Is initiated by a unit of work (a Transaction)

¶ Is implemented by the DBMS

¶ Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to be

Committed .Commit : a control operation that:

¶ Is initiated by a unit of work (a Transaction)

¶ Is implemented by the DBMS

¶ Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to

be Committed .

The explicit committing of a Database Transaction can only occur in a Frame where the word

òCommitó is specified.

Comment: Multiple Transaction control operations may occur within the sa me Frame. For

example, a Transaction that consists of a single Frame would have both òStartó and òCommitó in

its Database Footprint column corresponding with Frame 1.

For remaining rows of the Database Footprint the column corresponding to each Frame contains the

access method required for the table column listed in that row. The possible access methods are as
follows:

¶ The word òReferenceó indicates that the TPC-E table column is identified in the database and

the content is accessed within the Frame without passing the content of the table column to the

EGenTxnHarness .

¶ The word òReturnó indicates that the TPC-E table column is referenced and that its content is

retrieved from the database and passed to the EGenTxnHarn ess. The table column must be

referenced in the same Frame where the word òReturnó is specified. The content of the table

column can only be passed to subsequent Frames via the input and output parameters

specified in the Frame parameters.

¶ The word òModify ó indicates that the content of a TPC-E table column is modified within the

Frame. The content of the table column can only be changed in a Frame where the word

òModify ó is specified. When the original content of the table column must also be referenced

or returned before it is modified, a òReferenceó or a òReturnó access method is also specified.

¶ The word òAddó indicates that a number of rows are added to the TPC-E table specified by the

Database Footprint . TPC-E Table row(s) can only be added in a Frame where the word òAddó

is specified. The number of rows that are added is specified in the second column of the

Database Footprint with either ò# rowó for a fixed number of rows or òrow(s)ó for an

unspecified number of rows.

¶ The word òRemoveó indicates that a number of rows are removed from the TPC-E table

specified by the Database Footprint . Table row(s) can only be removed in a Frame where the

word òRemoveó is specified. The number of rows that are removed is specified in the second

column of the Database Footprint with either ò# rowó for a fixed number of rows or òrow(s)ó
for an unspecified number of rows.

Comment 1: An asterisk following any item in the column of a given Frame denotes that the

transaction control, the database interactions, or the execution of the entire Frame is conditional.

The EGenTxnHarness defines under which conditions the Frame will be executed.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 76 of 287

Comment 2: In the example Database Footprint above, the Database Transaction is started in

Frame 1. If Frame 2 is executed the Database Transaction may be rolled back. If Frame 3 is

executed the Database Transaction must be Committed . For the table CUSTOMER_ACCOUNT,

the table column CA_BAL is referenced and the table columns CA_C_ID and CA_TAX_ST are

returned in Frame 1. For the HOLDING table, the column H_PRICE is returned and H_QTY is

modified if Frame 2 is executed. Additionally, if Frame 2 is executed, a number of rows are

conditionally removed from the HOLDING table and 1 row is conditionally added to the

HOLDING table. For the TRADE_HISTORY table, a row is added if Frame 3 is executed.

Comment 3: The programming semantics used to implement the required access methods for a given
table column is not restricted from performing operations typically associated with a different

access method, as long as the implementation of the Frame is functionally equivalent to the

specified Pseudo-code. For example, òselect for updateó and òselect with UPDLOCKó are

compliant implementations of a Reference access method.

3.2 Transaction Implementation Rules

3.2.1 Frame Implementation

3.2.1.1 The implementation of a Frame is not allowed to assume any prior knowledge of $&ÌÕɀÚ data

generation methods or values for data elements defined in the database schema for the benchmark,
except for the EGen constants listed in the table below.

Comment 1: The intent of this clause is to prevent the Frames from using constant values, or other

means, to circumvent database references to static or infrequently changing data elements. In general,
using any private knowledge specific to the benchmark, but which is not explicitly furnished to the

Transaction or the Frame, via Transaction inputs or Transaction Pseudo-code, is prohibited.

3.2.1.2 The following table shows EGen constants used as limits when generating the number of values for

Transaction inputs or when accepting Transaction outputs. These constant limits are provided in the

specification for explicit usage in the corresponding Clause 3.3 Frame Implementations .

Description Constant Value EGen Filename

Broker-Volume

Minimum number of input broker names min_broker_list_len 20 TxnHarnessStructs.h

Maximum number of inp ut broker names max_broker_list_len 40 TxnHarnessStructs.h

Customer-Position

Maximum customer accounts per customer max_acct_len 10 TxnHarnessStructs.h

Maximum number of TRADE_HISTORY rows
to return

max_hist_len 30 TxnHarnessStructs.h

Market -Feed

Maxi mum number of items on the ticker max_feed_len 20 TxnHarnessStructs.h

Security-Detail

Minimum number of DAILY_MARKET rows
to return

min_day_len 5 TxnHarnessStructs.h

Maximum number of DAILY_MARKET rows
to return

max_day_len 20 TxnHarnessStructs.h

Maxim um number of FINANCIAL rows to
return

max_fin_len 20 TxnHarnessStructs.h

Maximum number of NEWS_ITEM rows to max_news_len 2 TxnHarnessStructs.h

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 77 of 287

return

Maximum number of
COMPANY_COMPETITOR rows to return

max_comp_len 3 TxnHarnessStructs.h

Trade-Lookup

Maximum number of TRADE rows to return
for Transaction

TradeLookupMaxRows 20 MiscConsts.h

Maximum number of TRADE rows to return
for Frame 1

TradeLookupFrame1MaxRows 20 MiscConsts.h

Maximum number of TRADE rows to return
for Frame 2

TradeLookupFrame2MaxRows 20
MiscConsts.h

Maximum number of TRADE rows to return
for Frame 3

TradeLookupFrame3MaxRows 20
MiscConsts.h

Maximum number of TRADE _HISTORY
rows to return

TradeLookupMaxTradeHistoryRowsReturned 3
MiscConsts.h

Trade-Status

Maximum number of trade s tatus rows to
return

max_trade_status_len 50 TxnHarnessStructs.h

Trade-Update

Maximum number of TRADE rows to return
for Transaction

TradeUpdateMaxRows 20 MiscConsts.h

Maximum number of TRADE rows to return
for Frame 1

TradeUpdateFrame1MaxRows 20 MiscConsts.h

Maximum number of TRADE rows to return
for Frame 2

TradeUpdateFrame2MaxRows 20
MiscConsts.h

Maximum number of TRADE rows to return
for Frame 3

TradeUpdateFrame3MaxRows 20
MiscConsts.h

Maximum number of TRADE _HISTORY
rows to return

TradeUpdateMaxTradeHistoryRowsReturned 3
MiscConsts.h

3.2.1.3 All data exchanges between Frames must be done by the EGenTxnHarness through its use of input

and output parameters passed in and out of the Frames.

Comment 1: The intent of this clause is to prevent the Frames from using global variables, or other

means, for storing and retrieving information across multiple invocations of the same or different

Frames in order to avoid work intended to be done during each individual invocation.

Comment 2: The Test Sponsor may augment each Frame with code to unpack the input parameters

received from the EGenTxnHarness and to pack the output parameters returned to the

EGenTxnHarness .

3.2.1.4 The Frame Implementation must perform each database interaction specified in the 3ÙÈÕÚÈÊÛÐÖÕɀÚ

Database Footprint , using the specified access method.

3.2.1.5 The Frame Implementation must access any column that is marked as Reference. It is also free to

access other columns that are not marked as Reference. For the other database interactions, the Frame

Implementation must perform all the required operations and/or return all the specified column

values.

3.2.1.6 The implementation of each Frame must be functionally equivalent to the Pseudo-code provided for

that Frame in Clause 3.3. Functional equivalence is satisfied when:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 78 of 287

¶ For a given set of inputs the implementation produces the same outputs and causes the same

change in database state as the Pseudo-code. A change in database state is a change to a TPC-E

Table or TPC-E Table column, resulting from any Modify , Add or Remove access method

defined by the 3ÙÈÕÚÈÊÛÐÖÕɀÚɯ#ÈÛÈÉÈÚÌɯ%ÖÖÛ×ÙÐÕÛ.

¶ All access methods in the Database Footprint are performed.

¶ No additional Add / Modify / Remove access methods against any TPC-E Table are performed.

Comment: Additional Reference access methods against any TPC-E Table may be performed.

Additional access methods against any User-Defined Object may be performed.

3.2.1.7 The minimum decimal precision for any computation performed as part of the Frame must be the

maximum decimal precision of all the individual items in that calculation.

3.2.1.8 Each Frame and Transaction has a status output parameter used to indicate the execution status of the

Frame or Transaction . A status value of 0 indicates success. A negative status value indicates an error

that would invalidate a Test Run. A positive non -zero integer value for status indicates a warning.

Warnings mean that an unexpected result was generated and the Test Sponsor and Auditor should

investigate the unexpected result. The unexpected result may be due to a rare but legal condition or it
may be because of an incorrect implementation or run -time problem. If the latter is the cause of the

warning , it must be treated as an error that invalidates the Test Run.

The following table s hows the positive warning numbers and where they may happen in EGen.

Transaction Frame
Warning

Status
Reason for Warning

Trade-Lookup 2 +621 num_found == 0

Trade-Lookup 3 +631 num_found == 0

Trade-Lookup 4 +641 num_trades_found == 0

Trade-Update 2 +1021 num_updated == 0

Trade-Update 3 +1031 num_found == 0

3.2.1.9 If a transaction processing monitor (hereinafter referred to as TM) is used it must be commercially
available software which provides the following features/functionality:

Operation - The TM must allow for:

¶ request/service prioritization

¶ multiplexing/de multiplexing of requests/services

¶ automatic load balancing

¶ reception, queuing, and execution of multiple requests/services concurrently

Security - The TM must allow for:

¶ the ability to validate and au thorize execution of each service at the time the service is requested.

¶ the restriction of administrative functions to authorized users.

Administration/Maintenance - The TM must have the predefined capability to perform centralized,
non programmatic (i.e., must be implemented in the standard product and not require programming)
and dynamic configuration management of TM resources including hardware, network, services
(single or group), queue management prioritization rules, etc.

Recovery - The TM must have the capability to:

¶ post error codes to an application

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 79 of 287

¶ detect and terminate long-running transactions based on predefined time -out intervals

Application Transparency - The message context(s) that exist between the client and server application
programs must be managed solely by the TM. The client and server application programs must not
have any knowledge of the message context or the underlying communication mechanisms that
support that context.

Comment 1: The following are examples of implementations tha t are non-compliant with the
Application Transparency requirement.

1. Client and server application programs use the same identifier (e.g., handle or pointer) to maintain
the message context for multiple transactions.

2. Change and/or recompilation of the client and/or server application programs is required when
the number of queues or equivalent data structures used by the TM to maintain the message context
between the client and server application programs is changed by TM administration.

Comment 2: The intent of this clause is to encourage the use of general purpose, commercially available
transaction monitors, and to exclude special purpose software developed for benchmarking or other
limited use. It is recognized that implementations of features and functio nality described above vary
across vendors' architectures. Such differences do not preclude compliance with the requirements of
this clause.

3.2.2 Customer Partitioning and Generating Transaction I nputs

3.2.2.1 If customer partitioning is being used and the Frame is Customer Initiated , EGenDriverCE will apply

the following rules whenever generating a customer identifier, account identifier or customer tax
identifier:

¶ 50% of the time the data is selected from the partitionõs range of customers.

¶ 50% of the time the data is selected from the entire range of customers.

If customer partitioning is not being used , or the Frame is not Customer Initiated , EGenDriverCE will

generate customer identifiers, account identifiers and customer tax identifiers from the entire range of
customers.

3.3 The Transactions

The TPC-E benchmark consists of eleven Transactions, and one cleanup Transaction . To generate a

reasonably balanced workload that resembles real production environments, the Transactions have to

cover a wide variety of system fu nctions. Ten of the Transactions follow a specific mix to generate the

desired workload while keeping the benchmark environment simple, repeatable and easy to execute.

The eleventh Transaction is not part of the Transaction Mix , but is executed at fixed intervals. This

Transaction, called òData-Maintenanceó, simulates administrative updates to tables that are not

otherwise modified by the Transaction s in the mix. A cleanup Transaction, called òTrade-Cleanupó, is

provided to clean up pending and submitted trades that may exist from an earlier run.

One of the key performance characteristics of database systems is the ratio of reads and writes

generated by the workload. To emulate such a ratio, TPC-E has defined Transaction s with read -only

characteristics as well as Transaction s with read -write characteristics. In addition, the Transaction s

apply varying loads on the processor.

The variety of processor, IO, and execution frequency requirements for the Transaction s allows the

benchmark to emulate a real environment with heavy processor utilization while maintaining a
reasonable IO load in a simple benchmark configuration.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 80 of 287

The Transaction s in the mix can be grouped into three categories:

¶ Customer Initiated: These Transactions simulate customer interactions with the system and are

initiated by the Customer Emulator component of the benchmark Driver .

¶ Broker age Initiated : These Transactions simulate broker interactions with the system and are

initiated by the Customer Emulator component of the benchmark Driver .

¶ Market T riggered : These Transactions simulate the behavior of the market and are triggered by

the Market Exchange Emulator component of the benchmark Driver .

In additi on to the mix of transactions above, the benchmark defines a time triggered Data-Maintenance

transaction , which is initiated at fixed time intervals as defined in Clause 6.3.3. Also defined is a Trade-

Cleanup transaction (see clause 6.3.4), which may not be executed within a Test Run , but must be

executed once before a Test Run if the database is not in its initially populated state (i.e., if any prior

runs have been performed on the database).

The following summary table lists the basic characteristics of the transactions :

Transaction Weight Access Category Frames Definition

Broker-Volume Mid to Heavy Read-only Brokerage Initiated 1 Clause 3.3.1

Customer-Position Mid to Heavy Read-only Customer Initiated 3 Clause 3.3.2

Market -Feed Medium Read-write Market T riggered 1 Clause 3.3.3

Market -Watch Medium Read-only Customer Initiated 1 Clause 3.3.4

Security-Detail Medium Read-only Customer Initiated 1 Clause 3.3.5

Trade-Lookup Medium Read-only

Brokerage Initiated for
Frames 1 & 3

Customer Initiated for
Frames 2 & 4

4 Clause 3.3.6

Trade-Order Heavy Read-write Customer Initiated 6 Clause 3.3.7

Trade-Result Heavy Read-write Market Triggered 6 Clause 3.3.8

Trade-Status Light Read-only Customer Initiated 1 Clause 3.3.9

Trade-Update Medium Read-write

Brokerage Initiated for
Frames 1& 3

Customer Initiated for
Frame 2

3 Clause 3.3.10

Data-Maintenance Light Read-write Time Triggered 1 Clause 3.3.11

Trade-Cleanup Medium Read-write Run once before Test Run 1 Clause 3.3.12

3.3.1 The Broker -Volume Transaction

The Broker-Volume Transaction is designed to emulate a brokerage houseõs òup-to-the-minuteó

internal busi ness processing. An example of a Broker-Volume Transaction would be a manager

generating a report on the current performance potential of various brokers.

Broker-Volume is invoked by EGenDriverCE . It consists of a single Frame. The Transaction searches

the pending limit orders to find orders that are associated with a given list of brokers responsible for
stocks of a given sector. The value of each order is calculated based upon bid price and quantity of
shares and added to the running total volume for the appropriate broker. The list of brokers with their
associated total volume sorted in descending volume order is returned.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 81 of 287

3.3.1.1 Broker -Volume Trans action Parameters

The inputs to the Broker-Volume Transaction are generated by the EGenDriverCE code in

CETxnInputGenerator .cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Broker-Volume Interfaces Module/Data Structure

CE Input generation GenerateBrokerVolumeInput()

Transaction Input/Output Structure
TBrokerVolumeTxnInput
TBrokerVolumeTxnOutput

Frame 1 Input/Output Structure
TBrokerVolumeTxnInput
TBrokerVolumeFrame1Output

Broker-Volume Transaction Parameters:

Parameter Direction Description

broker_list[] IN

A list of twenty to forty distinct broker name strings as defined by B_NAME in
BROKER table. Names are randomly selected from the broker range, with, uniform
distribution. Th e list size is determined by the first null input name in the
broker_list array.

sector_name IN
A randomly selected sector name string as defined in SC_NAME in SECTOR table
using uniform distribution.

list_len OUT Number of items in the list being return ed.

status OUT Code indicating the execution status for this transaction.

volume[] OUT

A list of numbers, sorted in descending order, representing the sum of all trade
request values (TR_QTY * TR_BID_PRICE) in the TRADE_REQUEST table for
stocks in a given sector grouped by broker names provided by broker_list. The list
size is determined by list_len parameter.

3.3.1.2 Broker -Volume Transaction Database Footprint

This Transaction is read-only and makes no changes to the database. The Broker-Volume Database

Footprint is as follows:

Broker-Volume Database Footprint

Table Column
Frame

1

BROKER B_NAME Return

TRADE_REQUEST
TR_BID_PRICE Reference

TR_QTY Reference

Transaction Control
Start
Commit

3.3.1.3 Broker Volume Transaction Frame 1 of 1

The database access methods used in Frame 1 are all Returns .

The EGenTxnHarness controls the execution of Frame 1 as follows:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 82 of 287

{

invoke (Broker - Volume_Frame - 1)

if (list_len < 0) or (list_len > max_broker_list_len) then

{

 status = - 111

}

}

Broker-Volume Frame 1 of 1 Parameters:

Parameter Direction Description

broker_list[] IN

A list of twenty to forty distinct broker name strings as
defined by B_NAME in BROKER table. Names are randomly
selected from the broker range, with, uniform distribution.
The list size is determined by the first null input name in the
broker_list array.

sector_name IN
A randomly selected sector name string as defined in
SC_NAME in SECTOR table using uniform distribution.

broker_name[] OUT
A list of broker name strings sorted in descending order of
the òvolumeó associated with the broker. The list size is
determined by list_len parameter.

list_len OUT Number of items in the list being returned.

volume[] OUT

A list of numbers, sorted in descending order, representing
the sum of all trade request values (TR_QTY *
TR_BID_PRICE) in the TRADE_REQUEST table for stocks in
a given sector grouped by broker names provided by
broker_list. The list size is determined by list_len parameter.

Broker - Volume_Frame - 1 Pseudo - code: Broker Volume

{

start trans action

// Should return 0 to 40 rows

select

broker_name[] = B_NAME,

volume[] = sum(TR_QTY * TR_BID_PRICE)

from

TRADE_REQUEST,

SECTOR,

INDUSTRY

COMPANY,

BROKER,

SECURITY

where

TR_B_ID = B_ID and

TR_S_SYMB = S_SYMB and

S_CO_ID = CO_ID and

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 83 of 287

Broker - Volume_Frame - 1 Pseudo - code: Broker Volume

CO_IN_ID = IN _ID and

SC_ID = IN_SC_ID and

B_NAME in (broker_list) and

SC_NAME = sector_name

group by

B_NAME

order by

2 DESC

// row_count will frequently be zero near the start of a Test Run when

// TRADE_REQUEST table is mostly empty.

list_len = row_count

commit tran saction

}

3.3.2 The Customer -Position Transaction

The Customer-Position Transaction is designed to emulate the process of retrieving the customerõs

profile and summarizing their overall standing based on current market values for all assets. This is
representative of the work performed when a customer asks the question òWhat am I worth today?ó

Customer-Position is invoked by EGenDriverCE . It consists of three Frames, (Frame 2 and 3 are

mutually exclusive). The customer is specified either by a customer ID or a customer tax ID. If the

customer ID passed into the Transaction is 0, then the customer tax ID is used to look up the customer

ID. Detailed information about the customerõs profile is retrieved. In addition, for each of the
customerõs accounts, the cash balance of the account and the total current market value of all holdings
in the account are returned.

If a history of trading activity has been requested, information is retrieved on the ten most recent trades
for a randomly chosen account among the customerõs accounts.

3.3.2.1 Customer-Position Transaction Parameters

The inputs to the Customer Position Transaction are generated by the EGenDriverCE code in

CETxnInputGenerator .cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Customer-Position Interfaces Module/Data Structure

CE Input generation GenerateCustomerPositionInput()

Transaction Input/Output Structure
TCustomerPositionTxnInput
TCustomerPositionTxnOutp ut

Frame 1 Input/Output Structure
TCustomerPositionFrame1Input
TCustomerPositionFrame1Output

Frame 2 Input/Output Structure
TCustomerPositionFrame2Input
TCustomerPositionFrame2Output

Frame 3 Input/Output Structure <none>

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 84 of 287

Customer-Position Transaction Parameters:

Parameter Direction Description

acct_id_idx IN
Index to one of the customerõs accounts. This
indexed account will be used in frame 2 if
get_history is TRUE.

cust_id IN Customer id or 0, selected by the driver.

get_history IN
Selected by the driver to be 1 if Frame 2 is to be
invoked or 0 if not.

tax_id IN
Customer tax id or empty string selected by the
driver.

acct_id[max_acct_len] OUT Array of customer account IDs.

acct_len OUT
Number of customer accounts (max_acct_len (10) or
less)

asset_total[max_acct_len] OUT Array of asset totals for each customer account.

c_ad_id OUT Customer address identifier.

c_area_1 OUT Area code for customerõs first phone number.

c_area_2 OUT Area code for customerõs second phone number.

c_area_3 OUT Area code for customerõs third phone number.

c_ctry_1 OUT Country code for customerõs first phone number.

c_ctry_2 OUT Country code for customerõs second phone number.

c_ctry_3 OUT Country code for customerõs third phone number.

c_dob OUT Customer date of birth.

c_email_1 OUT Customerõs first email address.

c_email_2 OUT Customerõs second email address.

c_ext_1 OUT Customerõs extension for the first phone number.

c_ext_2 OUT Customerõs extension for the second phone number.

c_ext_3 OUT Customerõs extension for the third phone number.

c_f_name OUT Customer first name.

c_gndr OUT Customer gender.

c_l_name OUT Customer last name.

c_local_1 OUT Customerõs first phone number.

c_local_2 OUT Customerõs second phone number.

c_local_3 OUT Customerõs third phone number.

c_m_name OUT Customer middle name.

c_st_id OUT Customer Status id.

c_tier OUT Customer tier.

cash_bal[max_acct_len] OUT Array of cash balances for each customer account.

hist_dts[max_hist_len] OUT
Date for each transaction date from the transaction
history

hist_len OUT Number of records from the transaction history

qty[max_hist_len] OUT
Number of shares involved in each event from
history

status OUT
Code indicating the execution status for this
transaction.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 85 of 287

symbol[max_hist_len] OUT Security involved in each event from history.

trade_id[max_hist_len] OUT Trade ID for each event from history.

trade_status[max_hist_len] OUT Trade Status for each event from history.

3.3.2.2 Customer-Position Transaction Database Footprint

The Customer-Position Database Footprint is as follows:

Customer-Position Database Footprint

Table Name Column
Frame

1 2* 3*

CUSTOMER

C_AD_ID Return

C_AREA_1 Return

C_AREA_2 Return

C_AREA_3 Return

C_CTRY_1 Return

C_CTRY_2 Return

C_CTRY_3 Return

C_DOB Return

C_EMAIL_1 Return

C_EMAIL_2 Return

C_EXT_1 Return

C_EXT_2 Return

C_EXT_3 Return

C_F_NAME Return

C_GNDR Return

C_L_NAME Return

C_LOCAL_1 Return

C_LOCAL_2 Return

C_LOCAL_3 Return

C_M_NAME Return

C_ST_ID Return

C_TIER Return

CUSTOMER_ACCOUNT
CA_BAL Return

CA_ID Return

HOLDING_SUMMARY HS_QTY Reference

LAST_TRADE LT_PRICE Reference

STATUS_TYPE ST_NAME Return

TRADE_HISTORY TH_DTS Return

TRADE
T_ID Return

T_QTY Return

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 86 of 287

T_S_SYMB Return

Transaction Control Start Commit Commit

3.3.2.3 Customer-Position Transaction Frame 1 of 3

If the cust_id input parameter is set to 0, the Frame must use the tax_id input parameter to search the

CUSTOMER table and find the ID of the customer. The Frame retrieves the detailed customer

information and finds the cash balance for each of the customerõs accounts as well as the total value of

the holdings in each account. In addition to the detailed customer information, the Frame returns a list

of accounts and their associated cash balance and asset value sorted by asset value.

The database access methods used in Frame 1 are Reference and Return .

The EGenTxnHarness controls the execution of Frame 1 as follows:

{

invoke (Customer - Position_Fr ame- 1)

if (acct_len < 1) or (acct_len > max_acct_len) then

{

 status = - 211

)

}

Customer-Position Frame 1 of 3 Parameters:

Parameter Direction Description

cust_id IN/OUT
Customer id or 0, selected by the driver. When cust_id is
not 0, the rules for determining the range of available
customer identifiers are described in clause 3.2.2.1.

tax_id IN

Customer tax id or empty string selected by the driver.
When tax_id is not the empty string, the rules for
determining the range of available customer tax identifiers
are described in clause 3.2.2.1.

acct_id[max_acct_len] OUT Array of customer account IDs.

acct_len OUT Number of customer accounts (max_acct_len (10) or less).

asset_total[max_acct_len] OUT Array of asset totals for each customer account.

c_ad_id OUT Customer address identifier.

c_area_1 OUT Area code for customerõs first phone number.

c_area_2 OUT Area code for customerõs second phone number.

c_area_3 OUT Area code for customerõs third phone number.

c_ctry_1 OUT Country code for customerõs first phone number.

c_ctry_2 OUT Country code for customerõs second phone number.

c_ctry_3 OUT Country code for customerõs third phone number.

c_dob OUT Customer date of birth.

c_email_1 OUT Customerõs first email address.

c_email_2 OUT Customerõs second email address.

c_ext_1 OUT Customerõs extension for the first phone number.

c_ext_2 OUT Customerõs extension for the second phone number.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 87 of 287

c_ext_3 OUT Customerõs extension for the third phone number.

c_f_name OUT Customer first name.

c_gndr OUT Customer gender.

c_l_name OUT Customer last name.

c_local_1 OUT Customerõs first phone number.

c_local_2 OUT Customerõs second phone number.

c_local_3 OUT Customerõs third phone number.

c_m_name OUT Customer middle name.

c_st_id OUT Customer Status id.

c_tier OUT Customer tier.

cash_bal[max_acct_len] OUT Array of cash balances for each customer account.

Customer - Position_Frame - 1 Pseudo - code: Get the customer's total assets

{

start transaction

if (cust_id == null_cust_id) then {

select

cust_id = C_ID

from

CUSTOMER

where

C_TAX_ID = tax_id

}

select

c_st_id = C_ST_ID,

c_l_name = C_L_NAME,

c_f_name = C_F_NAME,

c_m_name = C_M_NAME,

c_gndr = C_GNDR,

c_tier = C_TIER,

c_dob = C_DOB,

c_a d_id = C_AD_ID,

c_ctry_1 = C_CTRY_1,

c_area_1 = C_AREA_1,

c_local_1 = C_LOCAL_1,

c_ext_1 = C_EXT_1,

c_ctry_2 = C_CTRY_2,

c_area_2 = C_AREA_2,

c_local_2 = C_LOCAL_2,

c_ext_2 = C_EXT_2,

c_ctry_3 = C_CTRY_3,

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 88 of 287

Customer - Position_Frame - 1 Pseudo - code: Get the customer's total assets

c_area_3 = C_AREA_3,

c_local_3 = C_LOCA L_3,

c_ext_3 = C_EXT_3,

c_email_1 = C_EMAIL_1,

c_email_2 = C_EMAIL_2

from

CUSTOMER

where

C_ID = cust_id

// Should return 1 to max_acct_len (10).

select first max_acct_len rows

acct_id[] = CA_ID,

cash_bal[] = CA_BAL,

assets_total[] = ifnull((sum (HS_QTY * LT_PRICE)),0)

from

CUSTOMER_ACCOUNT left outer join

HOLDING_SUMMARY on HS_CA_ID = CA_ID,

LAST_TRADE

where

CA_C_ID = cust_id and

LT_S_SYMB = HS_S_SYMB

group by

CA_ID, CA_BAL

order by

3 asc

acct_len = row_count

}

3.3.2.4 Customer-Position Transaction F rame 2 of 3

This Frame is only executed if the Transaction parameter get_history value is set to TRUE. Using the

customer account ID the Frame must search the TRADE and TRADE_HISTORY tables to find up to 30

history rows that correspond with the 10 most re cent trades executed by the customer account. For

each event the Frame must return the T_ID, T_S_SYMB, T_QTY, TH_DTS, and ST_NAME for all events

in a descending order of date found in TH_DTS. This Frame completes the work and commits the

Transaction

The database access methods used in Frame 2 are all Returns .

The EGenTxnHarness controls the execution of Frame 2 as follows:

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 89 of 287

{

if (get_history == 1) then

{

 frame2.acct_id = frame1.acct_id[acct_id_idx]

 invoke (Customer - Position_Frame - 2)

 if (hist_len < 1 0) or (hist_len > max_hist_len) then

 {

 status = - 221

 }

 exit

}

}

Customer-Position Frame 2 of 3 Parameters:

Parameter Direction Description

acct_id IN Customer account identifier

hist_dts[max_hist_len] OUT Date for each transaction date from the transaction history

hist_len OUT
Number of records from the transaction history, at most
max_hist_len which is 30.

qty[max_hist_len] OUT Number of shares involved in each event from history

symbol[max_hist_len] OUT Security involved in each event from histor y.

trade_id[max_hist_len] OUT Trade ID for each event from history.

trade_status[max_hist_len] OUT Trade Status for each event from history.

Customer - Position_Frame - 2 Pseudo - code: Get the customer's trade history

{

// Should return 1 0 to 30 rows.

se lect first 30 rows

trade_id[] = T_ID,

symbol[] = T_S_SYMB,

qty[] = T_QTY,

trade_status[] = ST_NAME,

hist_dts[] = TH_DTS

from

(select first 10 rows

T_ID as ID

 from

TRADE

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 90 of 287

Customer - Position_Frame - 2 Pseudo - code: Get the customer's trade history

 where

T_CA_ID = acct_id

 order by T_DTS desc) as T,

TRADE,

TRADE_HISTORY,

STATUS_TYPE

where

T_ID = ID and

TH_T_ID = T_ID and

ST_ID = TH_ST_ID

order by

TH_DTS desc

hist_len = row_count

commit transaction

}

3.3.2.5 Customer-Position Transaction Frame 3 of 3

This Frame is only executed if get_history Transaction input parame ter is set to FALSE. The Frame

simply Commits the Transaction started in Frame 1 and returns the status.

There are no database access methods used in Frame 3. This Frame is only using Transaction control

operations.

The EGenTxnHarness controls the execution of Frame 3 as follows:

{

if (g et_history != 1) then

{

 invoke (Customer - Position_Frame - 3)

}

}Customer - Position_Frame - 3: End database transaction

{

commit transaction

}

3.3.3 The Market -Feed Transaction

The Market-Feed Transaction is designed to emulate the process of tracking the current market

activity. This is representative of the brokerage house processing the òticker-tapeó from the market
exchange.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 91 of 287

Market -Feed is invoked by EGenDriverMEE . It consists of a single Frame. The Transaction receives the

latest trade activity information (symbol, price, quantity, etc.) from the market exchange. As a result of
processing the ticker feed, the prices for securities will increase or decrease. These changes in price may
trigger pending limit orders. If triggered, limit order processing is performed by sending details of the
trade request to the MEE, via the SendToMarketFromFrame interface.

Each Market-Feed ticker consists of 20 entries (max_feed_len constant in TxnHarnessStructs.h). Ten of
these entries are a result of trades submitted to the MEE by this brokerage house. The remaining entries
are generated by the MEE to simulate the reporting of trades from other brokerage houses. The Market-

Feed Transaction is allowed to process any number of ticker elements (from one to all) per Database

Transaction .

3.3.3.1 Market -Feed Transaction Parameters

The inputs to the Market -Feed Transaction are generated by the EGenDriverMEE code in MEE.cpp.

The data structures defined in TxnHarnessStructs.h must be used to communicate the input and output
parameters.

Market -Feed Interfaces Module/Data Structure

MEE Input generation CMEESUTInterface::MarketFeed()

Transaction Input/Output Structure
TMarketFeedTxnInput
TMarketFeedTxnOutput

Frame 1 Input/Output S tructure
TMarketFeedFrame1Input
TMarketFeedFrame1Output

Market -Feed Transaction Parameters:

Parameter Direction Description

price_quote[] IN
A list of numeric prices the Market Exchange Emulator generated for each
entry on the ticker list. Each securityõs price fluctuates between a low and high
price, the fluctuation has a predefined frequency.

status_submitted IN The string ID value for the STATUS_TYPE Submitted status.

symbol[] IN

A list of strings containing the Security Symbol for each security on the ticker.
The security symbol string follows the definition of LT_S_SYMB in the
LAST_TRADE table. The ticker was generated by the Market Exchange
Emulator.

trade_qty[] IN
A list of numbers representing the number of shares of a security that were
traded for this ticker entry. The trade_qty is the same as the trade_qty
requested in the Trade Request.

type_limit_buy IN The string ID value for the TRADE_TYPE Limit -Buy type.

type_limit_sell IN The string ID value for the TRADE_TYPE Limit -Sell type.

type_stop_loss IN The string ID value for the TRADE_TYPE Stop-Loss type.

unique_symbols IN The number of unique security symbols in the ticker stream.

send_len OUT Length of the output array. Ranges from 0 upwards. Average is about 4.

status OUT Code indicating the execution status for this transaction.

3.3.3.2 Market -Feed Transaction Database Footprint

The Market-Feed Database Footprint is as follows:

Market -Feed Database Footprint

Table Name Column Frame

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 92 of 287

1

LAST_TRADE

LT_DTS Modify

LT_PRICE Modify

LT_VOL
Reference
Modify

TRADE
T_DTS Modify*

T_ST_ID Modify*

TRADE_HISTORY 1 Row Add*

TRADE_REQUEST

TR_BID_PRICE Return

TR_QTY Return

TR_T_ID Return

TR_TT_ID Return

Row(s) Remove*

Transaction Control

Start
Commit
(1 ð
max_feed_len)

3.3.3.3 Market -Feed Transaction Frame 1 of 1

Using the entries in the ticker list, the Frame is responsible for:

¶ modifying the rows in the LAST_TRADE table with the new prices, the new daily volum es and
the new last trade dates

¶ identifying any pending limit orders that should be triggered by these ticker prices, processing

them, and submitting them to the MEE

The database access methods used in Frame 1 are Modifies , Adds , References, Removes and Returns .

The EGenTxnHarness controls the execution of Frame 1 as follows:

{

invoke (Market - Feed_Frame - 1)

if (num_updated < unique_symbols) then

{

 status = - 311;

}

}

Market -Feed Frame 1 of 1 Parameters:

Parameter Direction Description

price_quote[] IN
A list of numeric prices the Market Exchange Emulator generated for
each entry on the ticker list. Each securityõs price fluctuates between a
low and high price, the fluctuation has a predefined frequency.

status_submitted IN The string ID value for the STATUS_TYPE Submitted status.

symbol[] IN
A list of strings containing the S ecurity Symbol for each security on the
ticker. The security symbol string follows the definition of LT_S_SYMB
in the LAST_TRADE table. The ticker was generated by the Market

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 93 of 287

Exchange Emulator.

trade_qty[] IN
A list of numbers representing the number of shares of a security that
were traded for this ticker entry. The trade_qty is the same as the
trade_qty requested in the Trade Request.

type_limit_buy IN The string ID value for the TRADE_TYPE Limit -Buy type.

type_limit_sell IN The string ID value for th e TRADE_TYPE Limit-Sell type.

type_stop_loss IN The string ID value for the TRADE_TYPE Stop-Loss type.

num_updated OUT Number of LAST_TRADE rows updated.

send_len OUT
Length of the output arrays. Ranges from 0 upwards. Average is about
4.

Market - Feed_Frame - 1 Pseudo - code: Record the stock price and process any

pending limit orders which are triggered by the ticker price.

{

declare now_dts DATETIME

declare TradeRequestBuffer[]

declare req_price_quote S_PRICE_T

declare req_trade_id TRADE_T

declare re q_trade_qty S_QTY_T

declare req_trade_type CHAR(3)

declare rows_updated int

declare rows_sent int

get_current_dts(now_dts)

rows_updated = 0

for (i = 1, i<=max_feed_len, i++) {

start transaction

rows_sent = 0

update

LAST_TRADE

set

LT_PRICE = price_quote [i],

LT_VOL = LT_VOL + trade_qty[i],

LT_DTS = now_dts

where

LT_S_SYMB = symbol[i]

rows_updated = rows_updated + row_count

declare request_list cursor for

select

TR_T_ID,

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 94 of 287

Market - Feed_Frame - 1 Pseudo - code: Record the stock price and process any

pending limit orders which are triggered by the ticker price.

TR_BID_PRICE,

TR_TT_ID,

TR_QTY

from

TRADE_REQUEST

where

TR_S_SYMB = symbol[i] and (

 (TR_TT_ID = type_stop_loss and

TR_BID_PRICE >= price_quote[i]) or

(TR_TT_ID = type_limit_sell and

TR_BID_PRICE <= price_quote[i]) or

(TR_TT_ID = type_limit_buy and

TR_BID_PRICE >= price_quote[i])

)

open request_list

fetch from

request_list

into

req_ trade _id,

req_ price_quote,

req_ trade_type,

req_ trade_qty

do until (request_list.end_of_cursor) {

update

TRADE

set

T_DTS = now_dts,

T_ST_ID = status_submitted

where

T_ID = req_ trade_id

delete

TRADE_REQUEST

where

current of request_list

insert into

TRADE_HISTORY

values (

TH_T_ID = req_ trade_id,

TH_DTS = now_dts,

TH_ST_ID = status_submitted

)

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 95 of 287

Market - Feed_Frame - 1 Pseudo - code: Record the stock price and process any

pending limit orders which are triggered by the ticker price.

TradeRequestBuffer[rows_sent].symbol = symbol[i]

TradeRequestBuffer[rows_sent].trade_id = req_ trade_id

TradeRequestBuffer[rows_sent].price_quote = req_ price_quote

TradeRe questBuffer[rows_sent].trade_qty = req_ trade_qty

TradeRequestBuffer[rows_sent].trade_type = req_ trade_type

rows_sent = rows_sent + 1

fetch from

request_list

into

req_ trade_id,

req_ price_quote,

req_ trade_type,

req_ trade_qty

 } /* end of cursor fetch loop * /

close request_list

commit transaction

send_len = send_len + rows_sent

//send triggered trades to the Market Exchange Emulator

//via the SendToMarket interface. This should be done

//after the related database changes have committed

For (j=0; j<rows_se nt; j++)

{

 SendToMarketFromFrame(TradeRequestBuffer[j].symbol,

 TradeRequestBuffer[j].trade_id,

 TradeRequestBuffer[j].price_quote,

 TradeRequestBuffer[j].trade_qty,

 TradeRequestBuffer[j].trade_type);

}

} /* end of ticker loop */

}

3.3.4 The Market -Watch Transaction

The Market-Watch Transaction is designed to emulate the process of monitoring the overall

performance of the market by allowing a customer to track the current daily trend (up or down) of a
collection of securities. The collection of securities being monitored may be based upon a customerõs
current holdings, a customerõs watch list of prospective securities, or a particular industry.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 96 of 287

Market -Watch is invoked by EGenDriverCE . It consists of a single Frame. This Transaction calculates

the percentage change in value of the market capitalization of a collection of securities at a chosen dayõs
closing prices compared to the current market prices. The chosen day is non-uniformly selected from
the 1305 days of market data that was loaded during initial population of the database. The calculation
is done by looking at the chosen dayõs closing price for each security in the list and multiplying that by
the number of outstanding shares for that security. This product is added to a running total for the
chosen dayõs closing market capitalization. In addition, the current price for each security in the list is
multiplied b y the number of outstanding shares for that security. This product is added to a running
sum for the current market capitalization. The difference between the total market capitalization for
the chosen day's closing and the current total, expressed as a percentage, is returned.

The Transaction supports this market watch calculation on a group of securities chosen based on the

following list of criteria:

¶ Prospective-Watch - The collection of securities is chosen using all the securities in a customerõs

watch list. The rules for determining the range of available customers, and thereby watch lists, are
described in clause 3.2.2.1.

¶ Industry -Watch - The collection of securities is chosen using all the securities in an industry

belonging to companies within a specified range. The industry name is chosen at random from the
possible industry names using a uniform distribution.

¶ Portfolio -Watch - The collection of securities is chosen using all the securities that are held in a

customerõs account. The rules for determining the range of available customers are described in
clause 3.3.1.1. The customer account identifier is chosen at random from all the possible accounts
for that customer using a uniform distrib ution.

3.3.4.1 Market -Watch Transaction Parameters

The inputs to the Market -Watch Transaction are generated by the EGenDriverCE code in

CETxnInputGenerator.cpp . The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output par ameters.

Market -Watch Interfaces Module/Data Structure

CE Input generation GenerateMarketWatchInput()

Transaction Input/Output Structure
TMarketWatchTxnInput
TMarketWatchTxnOutput

Frame 1 Input/Output Structure
TMarketWatchFrame1Input
TMarketWatchFrame1Output

Market -Watch Transaction Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. The rules for determining the range of
available customers are described in clause 3.2.2.1. A single customer
account id, as defined by CA_ID in CUSTOMER_ACCOUNT, is chosen
at random, uniformly, from the range of customer account ids for the
chosen customer. This input will be used 35% of the time. The securities
collection will be all the securities held this customer account. The other
65% of the time when this input is not being used its value will be 0.

cust_id IN

A number randomly selected from the possible customer identifiers as
defined by C_ID in CUSTOMER table using a non-uniform by customer
tier distribution. (The rules for determining the range of possible
customer identifier s are described in clause 3.2.2.1.) This input will be
used 60% of the time. The securities collection will be all the securities in
this customerõs watch list. The other 40% of the time when this input is
not being used its value will be 0.

ending_co_id IN Company identifier of the last company in the range of 5,000 companies

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 97 of 287

to be searched for companies in IN_NAME industry. The value will be
starting_co_id + 4,999. This input will only be used when industry_name
is used which is 5% of the time. The other 95% of the time when this
input is not being used its value will be zero.

industry_name IN

A randomly selected industry name string as defined in IN_NAME in
INDUSTRY table using uniform distribution. This input will be used 5%
of the time. The securities collection will be all the securities of companies
in this industry. The othe r 95% of the time when this input is not being
used its value will be an empty string.

start_date IN
A date non-uniformly selected from the 1305 days in the
DAILY_MARKET table. The closing price of securities on this date is
used in the market capitalizat ion calculations.

starting_co_id IN

A number randomly selected from the range of possible company
identifiers minus 4,999. Company identifier of the first company in the
range of 5,000 companies to be searched for companies in IN_NAME
industry. This input will only be used when industry_name is used
which is 5% of the time. The other 95% of the time when this input is not
being used its value will be zero.

pct_change OUT

Numeric value calculated during the transaction by finding the
percentage change from chosen dayõs close of business capitalization for
the collection of securities and the current capitalization for the collection
of securities.

status OUT Code indicating the execution status for this transaction.

3.3.4.2 Market -Watch Transaction Database Footprint

The Market-Watch Database Footprint is as follows:

Market -Watch Database Footprint

Table Column
Frame

1

COMPANY
CO_ID Reference*

CO_IN_ID Reference*

DAILY_MARKET DM_CLOSE Reference

HOLDING_SUMMARY HS_S_SYMB Reference*

INDUSTRY
IN_ID Reference*

IN_NAME Reference*

LAST_TRADE LT_PRICE Reference

SECURITY

S_CO_ID Reference*

S_NUM_OUT Reference

S_SYMB Reference*

WATCH_ITEM WI_S_SYMB Reference*

WATCH_LIST
WL_C_ID Reference*

WL_ID Reference*

Transaction Control
Start
Commit

3.3.4.3 Market -Watch Transaction Frame 1 of 1

The database access methods used in Frame 1 are all References.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 98 of 287

The EGenTxnHarness controls the execution of Frame 1 as follows:

{

if (acct_id != 0) or (cust_id != 0) or (industry_name != ñò) then

{

 invoke (Market - Watch_Fra me- 1)

}

else

{

 status = - 411

}

}

Market -Watch Frame 1 of 1 Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. The rules for determining the range of
available customers are described in clause 3.2.2.1. A single customer
account id, as defined by CA_ID in CUSTOMER_ACCOUNT, is chosen
at random, uniformly, from the range of customer account ids for the
chosen customer. This input will be used 35% of the time. The securities
collection will be all the securities held this customer account. The other
65% of the time when this input is not being used its value will be 0.

cust_id IN

A number randomly selected from the possible customer identifiers as
defined by C_ID in CUSTOMER table using a non-uniform by customer
tier distribution. (The rules for determining the range of possible
customer identifier s are described in clause 3.2.2.1.) This input will be
used 60% of the time. The securities collection will be all the securities in
this customerõs watch list. The other 40% of the time when this input is
not being used its value will be 0.

ending_co_id IN

Company identifier of the last company in the range of 5,000 companies
to be searched for companies in IN_NAME industry. The value will be
starting_co_id + 4,999. This input will only be used when industry_name
is used which is 5% of the time. The other 95% of the time when this
input is not being used its value will be zero.

industry_name IN

A randomly selected industry name string as defined in IN_NAME in
INDUSTRY table using uniform distribution. This input will be used 5%
of the time. The securities collection will be all the securities of companies
in this industry. The othe r 95% of the time when this input is not being
used its value will be an empty string.

start_date IN
A date non-uniformly selected from the 1305 days in the
DAILY_MARKET table. The closing price o f securities on this date is
used in the market capitalization calculations

starting_co_id IN

A number randomly selected from the range of possible company
identifiers minus 4,999. Company identifier of the first company in the
range of 5,000 companies to be searched for companies in IN_NAME
industry. This input will only be used when industry_name is used
which is 5% of the time. The other 95% of the time when this input is not
being used its value will be zero.

pct_change OUT

Numeric value calculated during the transaction by finding the
percentage change from chosen dayõs close of business capitalization for
the collection of securities and the current capitalization for the collection
of securities.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 99 of 287

Market - Watch_Frame - 1 Pseudo - code: Build list of securities and compute

percentage

{

start transaction

if (cust_id != 0) then {

declare stock_list cursor for

select

WI_S_SYMB

from

WATCH_ITEM,

WATCH_LIST

where

WI_WL_ID = WL_ID and

WL_C_ID = cust_id

} else if (industry_name != "") then {

declare stock_list cursor for

select

S_SYMB

from

INDUSTRY,

COMPANY,

SECURITY

where

IN_NAME = industry_name and

CO_IN_ID = IN_ID and

CO_ID between (starting_co_id and ending_co_id) and

S_CO_ID = CO_ID

} else if (acct_id != 0) then {

declare stock_list cursor for

select

HS_S_SYMB

from

HOLDING_SUMMARY

where

HS_CA_ID = acct_id

}

old_mkt_cap = 0.0

new_mkt_cap = 0.0

pct_change = 0.0

open stock_list

do until (stock_list.end_of_cursor) {

fetch from

stock_list cursor

into

symbol

se lect

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 100 of 287

Market - Watch_Frame - 1 Pseudo - code: Build list of securities and compute

percentage

new_price = LT_PRICE

from

LAST_TRADE

where

LT_S_SYMB = symbol

select

s_num_out = S_NUM_OUT

from

SECURITY

where

S_SYMB = symbol

// Closing price for this security on the chosen day .

select

old_price = DM_CLOSE

from

DAILY_MARKET

where

DM_S_SYMB = symbol and

DM_DATE = start_date

old_mkt_cap += s_num_out * old_price

new_mkt_cap += s_num_out * new_price

}

if (old_mkt_cap != 0) then

{

// value of 0.00 for pct_change is valid

pct_change = 100 * (new_mkt_cap / old_mkt_cap - 1)

}

else

{

// no rows found, th is can happen rarely when an account has no holdings

pct_change = 0.0

}

close stock_list

commit transaction

}

3.3.5 The Security -Detail Transaction

The Security-Detail Transaction is designed to emulate the process of accessing detailed information on

a particular security. This is representative of a customer doing research on a security prior to making a
decision about whether or not to execute a trade.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 101 of 287

Security-Detail is invoked by EGenDriverCE . It consists of a single Frame. For a given security, the

Transaction will return detailed security and company information, a list of the companyõs

competitors, current and historical financial data, and recent news items about the company.

3.3.5.1 Security -Detail Transaction Parameters

The inputs to the Security-Detail Transaction are generated by the EGenDriverCE code in

CETxnInputGenerator .cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Security -Detail Transaction Parameters:

Parameter Direction Description

access_lob_flag IN
If 1, access the complete news articles for the company. If 0, access just the
news headlines and summaries.

max_rows_to_return IN
An integer value, randomly selected between 5 and 20 with a uniform
distribution. This value determines how many rows must be returned
from the DAILY_MARKET table for this security.

start_day IN

A date randomly selected from a uniform distribution of dates between 3
January 2000 and max_rows_to_return days before 1 January 2005. The
DAILY_MARKET table contains data for the period 3 January 2000 to 31
December 2004. The transaction will return max_rows_to_return worth of
rows from the DAILY_MARKET table for this security beginning with the
row for start_day.

symbol IN Security symbol, randomly selected from a uniform distribution.

last_vol OUT Volume of last trade

news_len OUT Number of news items returned in news array.

status OUT Code indicating the execution status for this transaction.

3.3.5.2 Security -Detail Transaction Database Footprint

The Security-Detail Database Footprint is as follows:

Security-Detail Database Footprint

Table Column
Frame

1

ADDRESS

AD_CTRY Return

AD_LINE1 Return

AD_LINE2 Return

AD_ZC_CODE Return

COMPANY

CO_CEO Return

CO_DESC Return

CO_NAME Return

Security-Detail Interfaces Module/Data Structure

CE Input generation GenerateSecurityDetailInput()

Transaction Input/Output Structure
TSecurityDetailTxnInput
TSecurityDetailTxnOutput

Frame 1 Input/Output Structure
TSecurityDetailFrame1Input
TSecurityDetailFrame1Output

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 102 of 287

CO_OPEN_DATE Return

CO_SP_RATE Return

CO_ST_ID Return

COMPANY_COMPETITOR

CP_CO_ID Reference

CP_COMP_CO_ID Reference

CP_IN_ID Reference

DAILY_MARKET

DM_CLOSE Return

DM_DATE Return

DM_HIGH Return

DM_LOW Return

DM_VOL Return

EXCHANGE

EX_CLOSE Return

EX_DESC Return

EX_NAME Return

EX_NUM_SYMB Return

EX_OPEN Return

FINANCIAL

FI_ASSETS Return

FI_BASIC_EPS Return

FI_DILUT_EPS Return

FI_INVENTORY Return

FI_LIABILITY Return

FI_MARGIN Return

FI_NET_EARN Return

FI_OUT_BASIC Return

FI_OUT_DILUT Return

FI_QTR Return

FI_QTR_START_DATE Return

FI_REVENUE Return

FI_YEAR Return

INDUSTRY IN_NAME Return

LAST_TRADE

LT_OPEN_PRICE Return

LT_PRICE Return

LT_VOL Return

NEWS_ITEM

NI_AUTHOR Return

NI_DTS Return

NI_HEADLINE Return*

NI_ITEM Return*

NI_SOURCE Return

NI_SUMMARY Return*

NEWS_XREF NX_CO_ID Reference

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 103 of 287

NX_NI_ID Reference

SECURITY

S_52_WK_HIGH Return

S_52_WK_HIGH_DATE Return

S_52_WK_LOW Return

S_52_WK_LOW_DATE Return

S_DIVIDEND Return

S_NAME Return

S_NUM_OUT Return

S_PE Return

S_START_DATE Return

S_YIELD Return

ZIP_CODE
ZC_DIV Return

ZC_TOWN Return

Transaction Control
Start
Commit

3.3.5.3 Security Detail Transaction Frame 1 of 1

The database access methods used in Frame 1 are Returns and References.

The EGenTxnHarness controls the execution of Frame 1 as follows:

{

invoke (Security - Detail_Frame - 1)

if (day_len < min_day_len) or (day_len > max_day_len) then

{

 status = - 511

}

else if (fin_len != max_fin_len) then

{

 status = - 512

}

else if (news_len != max_news_len) then

{

 status = - 513

}

}

Security-Detail Frame 1 of 1 Parameters:

Parameter Direction Description

access_lob_flag IN
If 1, access the complete news articles for the company. If 0, access just
the news headlines and summaries.

max_rows_to_return IN An integer value, randomly selected between 5
(iSecurityDetailMinRows) and 20 (iSecurityDetailMaxRows) with a

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 104 of 287

uniform distribution. This value determines how many rows must be
returned fr om the DAILY_MARKET table for this security.

start_day IN

A date randomly selected from a uniform distribution of dates between
3 January 2000 and max_rows_to_return before 31 December 2004. The
DAILY_MARKET table contains data for the period 3 January 2000 to 31
December 2004. The transaction will return max_rows_to_return worth
of rows from the DAILY_MARKET table for this security beginning
with the row for start_day.

symbol IN Security symbol, randomly selected from a uniform distribution.

52_wk_high OUT Number showing 52 week high value for the security.

52_wk_high_date OUT Date showing when the 52_wk_high happened.

52_wk_low OUT Number showing 52 week low value for the security.

52_wk_low_date OUT Date showing when 52_wk_low happened.

ceo_name OUT CEO name, based on a list of distinct first and last names.

co_ad_ctry OUT Company country, USA or Canada

co_ad_div OUT Company county or state or province

co_ad_line1 OUT Line 1 from a real company address

co_ad_line2 OUT Line 2 from a real company address

co_ad_town OUT Company town

co_ad_zip OUT
Company ZIP or postal code. Contains partly realistic US or Canadian
ZIP codes

co_desc OUT Short description of the company. Readable English text.

co_name OUT Company name

co_st_id OUT Contains the value ôST1õ

cp_co_name[max_comp_len] OUT
Array of strings containing the company names of competitors for this
securitiesõ company. EGen loads the COMPANY_COMPETITOR table
with 3 competitors for each company, so max_comp_len is 3.

cp_in_name[max_comp_len] OUT

Array of strings containing the name of the industries in which
competitors compete with this securitiesõ company. EGen loads the
COMPANY_COMPETITOR table with 3 competitors for each company,
so max_comp_len is 3.

day[max_day_len] OUT
Array of numbe rs containing daily data. max_day_len is a constant set
to 20.

day_len OUT Elements in the Day array

divid OUT Number containing security dividend

ex_ad_ctry OUT Exchange country

ex_ad_div OUT Exchange county or town or province

ex_ad_line1 OUT Line 1 from real exchange address

ex_ad_line2 OUT Line 2 from real exchange address

ex_ad_town OUT Exchange town

ex_ad_zip OUT Exchange ZIP code

ex_close OUT Time the exchange closes, 2 possible values.

ex_date OUT Date listed on exchange. Not earlier than Start_date

ex_desc OUT Description of the exchange

ex_name OUT Name of the exchange. 4 values

ex_num_symb OUT Number of securities traded

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 105 of 287

ex_open OUT Time the exchange opens

fin[max_fin_len] OUT
Array of numbers with financial data. max_fin_len (20) is a constant set
in the EGen code.

fin_len OUT Length of the array

last_open OUT Price of security at last exchange open

last_price OUT Price for security

last_vol OUT Volume of last trade

news[max_news_len] OUT
Array of news items about the security õs company. max_new_len (2) is a
constant set in the EGen code.

news_len OUT Number of news items returned in news array.

num_out OUT Number of outstanding shares. Valid range is 4,000,000 to 9,500,000,000.

open_date OUT Date the company opened. Valid range is 01/01/1800 to build date

pe_ratio OUT Price/earning ratio. A random value between 1.00 and 120.00

s_name OUT Security name, 6850 distinct values

sp_rate OUT Standards & Poor rating for the company, one of 39 values.

start_date OUT Date of trade started. Range id between 01/01/1900 and build date.

yield OUT Number containing yield for the security

Security - Detail_Frame - 1 Pseudo - code: Get all details about the security

{

Declare co_id IDENT_T

start transaction

select

s_name = S_ NAME,

co_id = CO_ID,

co_name = CO_NAME,

sp_rate = CO_SP_RATE

ceo_name = CO_CEO,

co_desc = CO_DESC,

open_date = CO_OPEN_DATE,

co_st_id = CO_ST_ID,

co_ad_line1 = CA.AD_LINE1,

co_ad_line2 = CA.AD_L INE2,

co_ad_town = ZCA.ZC_TOWN,

co_ad_div = ZCA.ZC_DIV,

co_ad_zip = CA.AD_ZC_CODE,

co_ad_ctry = CA.AD_CTRY,

num_out = S_NUM_OUT,

start_date = S_START_DATE,

exch_date = S_EXCH_DATE,

pe_ratio = S_PE,

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 106 of 287

Security - Detail_Frame - 1 Pseudo - code: Get all details about the security

52_wk_high = S_52WK_HIGH,

52_wk_high_date = S_52WK_HIGH_DATE,

52_wk_low = S_52WK_LOW,

52_wk_low_date = S_52WK_LOW_DATE,

divid = S_DIVIDEND,

yield = S_YIELD,

ex_ad_div = ZEA.ZC_DIV,

ex_ad_ctry = EA.AD_CTRY

ex_ad_line1 = EA.AD_LINE1,

ex_ad_line2 = EA.AD_LINE2,

ex_ad_town = ZEA.ZC_TOWN,

ex_ad_zip = EA.AD_ZC_CODE,

ex_close = EX_CLOSE,

ex_desc = EX_DESC,

ex_name = EX_NAME,

ex_num_symb = EX_NUM_SYMB,

ex_open = EX_OPEN

from

SECURITY,

COMPANY,

ADDRESS CA,

ADDRESS EA,

ZIP_CODE ZCA,

ZIP_CODE ZEA,

EXCHANGE

where

S_SYMB = symbol and

CO_ID = S_CO_ID and

CA.AD_ID = CO_AD_ID and

EA.AD_ID = EX_AD_ID and

EX_ID = S_EX_ID and

ca.ad_zc_code = zca.zc_code and

ea.ad_zc_code =zea.zc_code

// Sho uld return max_comp_len (3) rows

select first max_comp_len rows

cp_co_name[] = CO_NAME,

cp_in_name[] = IN_NAME

from

COMPANY_COMPETITOR, COMPANY, INDUSTRY

where

CP_CO_ID = co_id and

CO_ID = CP_COMP_CO_ID and

IN_ID = CP_IN_ID

// Should return max_fin_len (2 0) rows

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 107 of 287

Security - Detail_Frame - 1 Pseudo - code: Get all details about the security

select first max_fin_len rows

fin[].year = FI_YEAR,

fin[].qtr = FI_QTR,

fin[].strart_date = FI_QTR_START_DATE,

fin[].rev = FI_REVENUE,

fin[].net_earn = FI_NET_EARN,

fin[].basic_eps = FI_BASIC_EPS,

fin[].dilut_eps = FI_ DILUT_EPS,

fin[].margin = FI_MARGIN,

fin[].invent = FI_INVENTORY,

fin[].assets = FI_ASSETS,

fin[].liab = FI_LIABILITY,

fin[].out_basic = FI_OUT_BASIC,

fin[].out_dilut = FI_OUT_DILUT

from

FINANCIAL

where

FI_CO_ID = co_id

order by

FI_YEAR asc,

FI_QTR

fin_len = row_count

// Should return max_rows_to_return rows

// max_rows_to_return is between 5 and 20

select first max_rows_to_return rows

day[].date = DM_DATE,

day[].close = DM_CLOSE,

day[].high = DM_HIGH,

day[].low = DM_LOW,

day [].vol = DM_VOL

from

DAILY_MARKET

where

DM_S_SYMB = symbol and

DM_DATE >= start_day

order by

DM_DATE asc

day_len = row_count

select

last_price = LT_PRICE,

last_open = LT_OPEN_PRICE,

last_vol = LT_VOL

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 108 of 287

Security - Detail_Frame - 1 Pseudo - code: Get all details about the security

from

LAST_TRADE

where

LT_S_SYMB = symbol

// Shou ld return max_news_len (2) rows

if (access_lob_flag)

select first max_news_len rows

news[].item = NI_ITEM,

news[].dts = NI_DTS,

news[].src = NI_SOURCE,

news[].auth = NI_AUTHOR,

news[].headline = ñò,

news[].summary = ñò

from

NEWS_XREF,

NEWS_ITEM

where

NI_ID = NX_NI_ID and

NX_CO_ID = co_id

else

select first max_news_len rows

news[].item = ñò,

news[].dts = NI_DTS,

news[].src = NI_SOURCE,

news[].auth = NI_AUTHOR,

news[].headline = NI_HEADLINE,

news[].summary = NI_SUMMARY

fr om

NEWS_XREF,

NEWS_ITEM

where

NI_ID = NX_NI_ID and

NX_CO_ID = co_id

news_len = row_count

commit transaction

}

3.3.6 The Trade-Lookup Transaction

The Trade-Lookup Transaction is designed to emulate information retrieval by either a customer or a

broker to satisfy their questions regarding a set of trades. The various sets of trades are chosen such that
the work is representative of:

¶ performing general market analysis

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 109 of 287

¶ reviewing trades for a period of time prior to the most recent account statement

¶ analyzing past performance of a particular security

¶ analyzing the history of a particular customer holding

Trade-Lookup is invoked by EGenDriverCE . It consists of four mutually exclusive Frames. Each Frame

employs a different technique for looking up historical trade data.

Frame 1 accepts a list of trade IDs. Information for each of the trades in the list is returned.

Frame 2 accepts a customer account ID, a start timestamp, end timestamp and a number of trades (N)

as inputs. It returns information for the first N trades for the specified customer account between the
start and end timestamps (inclusive).

Frame 3 accepts a security symbol, a start timestamp, end timestamp and a number of trades (N) as

inputs. It returns info rmation for the first N trades for the given security between the start and end
timestamps (inclusive).

Frame 4 accepts a customer account ID and a timestamp as inputs. The first trade for this customer

account at or after the specified timestamp is identi fied. Then a maximum of 20 historical holding
changes for this trade ID are returned. The historical holding changes report on changes made by this
trade to holdings created by prior trades, and report on changes made by subsequent trades to any
holding cr eated by this trade.

3.3.6.1 Trade-Lookup Transaction Parameters

The inputs to the Trade-Lookup Transaction are generated by the EGenDriverCE code in

CETxnInputGenerator.cpp . The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Lookup Interfaces Module/Data Structure

CE Input generation GenerateTradeLookupInput()

Transaction Input/Output
Structure

TTradeLookupTxnInput
TTradeLookupTxnOutput

Frame 1 Input/Output Structure
TTradeLookupFrame1Input
TTradeLookupFrame1Output

Frame 2 Input/Output Structure
TTradeLookupFrame2Input
TTradeLookupFrame2Output

Frame 3 Input/Output Structure
TTradeLookupFrame3Input
TTradeLookupFrame3Output

Frame 4 Input/Output Structure
TTradeLookupFrame4Input
TTradeLookupFrame4Output

Trade-Lookup Transaction Parameters:

Parameter Direction Description

acct_id IN
Customer account ID. Used when frame_to_execute is 2 or 4, otherwise set to
0.

end_trade_dts IN

For Frames 1 and 4, this parameter is ignored, so it is set to an empty date.

Used in Frame 2 as the end point in time for identifying a particular trade.
Used in Frame 3 as the end point in time for identifying trades for a particular
symbol.

frame_to_execute IN Identifies which of the mutually exclusive frames to execu te.

max_acct_id IN
Used in Frame 3 to identify the maximum customer account ID, otherwise set
to 0.

max_trades IN Used in Frames 1, 2 and 3 for the number of trades to find otherwise set to 0.

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 110 of 287

The default value for max_trades for each frame is set in the
TTradeLookupSettings structure in DriverParameterSettings.h

start_trade_dts IN

For Frame 1, this parameter is ignored, so it is set to an empty date.

Used in Frame 2 as the point in time for identifying a particular trade.
Non-uniform over pre -populated interval.
Used in Frame 3 as the point in time for identifying trades for a particular
symbol.
Uniform over pre -populated interval.
Used in Frame 4 as the point in time for identifying a particular trade.
Uniform over pre -populated interval.

symbol IN
Used in Frame 3 as the security symbol for which to find trades. Uniformly
chosen over all securities. For the other frames symbol is set to the empty
string.

trade_id[] IN
Array of non -uniform randomly chosen trade IDs used by Frame 1 to identify
a set of particular trades. For the other frames array elements are set to 0. For
Frame 1, max_trades indicates how many elements are to be used in the array.

frame_executed OUT Confirmation of which frame was executed.

is_cash[] OUT Indicates whether the trades used in Frame 1, 2 or 3 were cash transactions.

is_market[] OUT Indicates whether the trades used in Frame 1 were market order trades.

num_found OUT
Number of trade rows found for frames 1, 2, 3, or number of holding history
rows found for frame 4.

status OUT Code indicating the execution status for this transaction.

trade_list[] OUT List of trade IDs found in Frame s 2 and 3.

3.3.6.2 Trade-Lookup Transaction Database Footprint

The Trade-Lookup Database Footprint is as follows:

Trade-Lookup Database Footprint

Table Column
Frame

1* 2* 3* 4*

CASH_TRANSACTION

CT_AMT Return* Return* Return*

CT_DTS Return* Return* Return*

CT_NAME Return* Return* Return*

HOLDING_HISTORY Row(s) Return*

SETTLEMENT

SE_AMT Return Return Return

SE_CASH_DUE_DATE Return Return Return

SE_CASH_TYPE Return Return Return

TRADE

T_BID_PRICE Return Return

T_CA_ID Return

T_DTS Reference Return Reference

T_EXEC_NAME Return Return Return

T_ID Return Return Return

T_IS_CASH Return Return Return

T_QTY Return

T_S_SYMB Reference

T_TRADE_PRICE Return Return Return

TPC BenchmarkÊ E - Standard Specification, Revision 1.14.0 - Page 111 of 287

T_TT_ID Return

TRADE_HISTORY
TH_DTS Return Return Return

TH_ST_ID Return Return Return

TRADE_TYPE TT_IS_MRKT Return

Transaction Control
Start
Commit

Start
Commit

Start
Commit

Start
Commit

3.3.6.3 Trade-Lookup Transaction Frame 1 of 4

The first Frame is responsible for retrieving information about the specified array of trade IDs.

The EGenTxnHarness controls the execution of Frame 1 as follows:

{

if(frame_to_exe cute == 1)

{

 invoke (Trade - Lookup_Frame - 1)

 if (num_found != max_trades) then

 {

 status = - 611

 }

 frame_executed = 1

}

[...]

Trade-Lookup Frame 1 of 4 Parameters:

Parameter Direction Description

max_trades IN
Number of valid array elements in trade_i d[]. The default value (20) is
set in TTradeLookupSettings.MaxRowsFrame1 in
DriverParameterSettings.h.

trade_id[] IN
The array of trade IDs picked non-uniformly over the set of pre -
populated trades.

bid_price[] OUT The requested unit price.

cash_transaction_amount[] OUT Amount of the cash transaction.

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Name of the person who executed the trade.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

is_market[] OUT Flag that is non-zero for a market trade, zero for a limit trade.

num_found OUT Number of trade rows returned; should be the same as max_trades.

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

trade_history_dts[][3] OUT Array of timestamps of when the trade history was updated.

