Generating Shifting Workloads to Benchmark Adaptability in Relational Database Systems

Tilmann Rabl, Andreas Lang, Thomas Hackl, Bernhard Sick, Harald Kosch

> Faculty of Computer Science University of Passau

TPC Technology Conference on Performance Evaluation & Benchmarking August 24, 2009

Introduction

Hot database research topics:

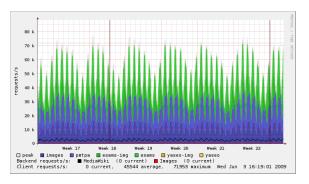
- Adaptability
- Automatic and autonomic tuning

How can they be benchmarked?

Hot database research topics:

- Adaptability
- Automatic and autonomic tuning

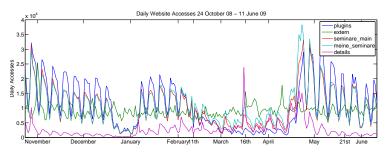
How can they be benchmarked?


Today's solution

- Starting from scratch
- Changing the workload completely

Motivation

How does real-world workload look like? Homogeneous workload:



Daily and weekly patterns

Motivation

How does real-world workload look like? Special purpose workload:

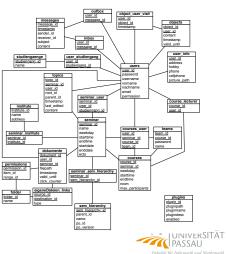
- Daily and weekly patterns
- Workload classes: working days, holidays, outliers
- Trends

Introduction (Benchmark Design) Workload Generation Benchmarking Objectives Conclusion

Benchmark Design Challenges

Design Challenges

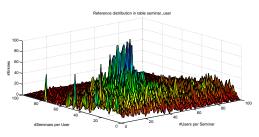
- Realistic data & workload patterns
- Scalable
- Configurable
- Random generators

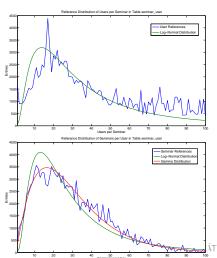

Basis

- Stud.IP eLearning management system
- Online application
- 1 year web server log data
- Complete database dump

SITÄT

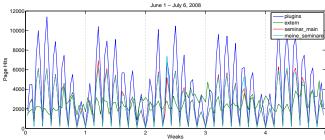
Benchmark Design


- 25 tables (original 200)
- 30 queries
- Only course management
- Most important: seminar - seminar_user - user



- Based on original data
- Maximum likelihood estimation
- Standard probability distributions
- Scalable

Introduction

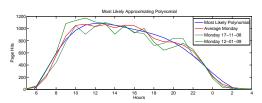


Generating Shifting Workloads to Benchmark Adaptability in Relational Database Systems

Workload Modeling

Introduction

- Workload interpreted as time series
- Classes of queries (meine_seminare)
- Classes of days (Monday during lecture period)
- Daily approximation by polynomials

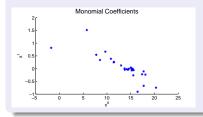

Polynomial Approximation

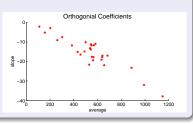
Optimal approximating polynomial of degree K:

$$p_{\mathbf{a}}(x) = \sum_{k=0}^{K} a_k p_k(x)$$

Properties of p_k :

- different ascending degrees
- leading coefficient one
- pair wise orthogonal (inner product)

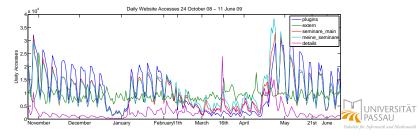

Workload Generation


Unchanging Behavior

Evaluate polynomial at certain points in time

Random Generation

- Time series as point in shape space
- Weighting factors a_k are normally distributed
- Multivariate Gaussian to generate weighting vector a



SITÄT

- Basic Performance
 - Shifting workloads
 - Measure peak performance
- Adaptivity
 - Different daily patterns
 - Measure adaptability

- Robustness
 - Introduction of outliers
 - Measure over adaptation
- Energy and Space Efficiency
 - Shifting workloads
 - Measure energy / space efficiency

Conclusion

Conclusion

- Online eLearning management benchmark
- New generator model for query workloads
- More realistic benchmarking for automatic / autonomic tuning

Conclusion

Conclusion

- Online eLearning management benchmark
- New generator model for query workloads
- More realistic benchmarking for automatic / autonomic tuning

Future Work

- Tune and test
- Apply techniques to standard benchmarks
- Trends in workloads
- Schema evolution

Conclusion

Questions?

Thank you.

