

DBMS workloads in online services

Swaroop Kavalanekar, **Dushyanth Narayanan**, Sriram Sankar, Eno Thereska, Kushagra Vaid, and Bruce Worthington

Microsoft Redmond and Microsoft Research Cambridge

Large-scale online services

- 1000s of servers
- Millions of users
- In mega-scale data centers
 - Each hosting many such services
- Server, infrastructure costs dominate
- Rightsizing is key
 - pick the right #servers

Large-scale online services

Structured storage tier I/O

Load variation over time

- User-facing services show diurnal pattern
 - "Pacific Ocean trough"
- Important to understand
 - Consolidate un/anti correlated workloads
 - Schedule background tasks intelligently
 - Power down resources at low load
- Potentially big \$\$\$ at mega-DC scale

Challenges

- Rightsizing
 - How many servers, and what hardware?
 - How much disk space v. IOPS v. CPU ...
- Consolidation
 - Which workloads are un(anti)correlated
- Power-proportionality
 - Maximize work done / Joule

In this talk

- Analyze I/O traces of real workloads
 - from structured storage in online services
- Characterize the workloads
 - Using a variety of metrics
- Compare with standard TPC benchmarks
 - How well do they match?

Outline

- Motivation
- Online workload analysis
- Conclusion

Workloads studied

- IM-DB
 - Messenger user profiles, buddy lists
- MSN-DB:
 - Web content for online portal
- EMAIL-DB
 - E-mail service metadata
- BLOB-DB
 - Metadata for blob store (blobs = photos, videos, ...)

Production server tracing

- Gives a very realistic picture of workload
- Low-overhead tracing infrastructure
 - Event Tracing for Windows (since Win 2000)
- Not trivial to setup (but worth it)
 - Avoid operations impact
 - Anonymize PII
 - Build trust with stakeholders

Production server tracing

- 4 services, 1 representative server each
- Traced every block-level read and write
 - Device number, offset, size, timestamp
- Trace periods vary (25 min 24 hrs)
- Below the buffer cache
- Also traced runs of TPC-C, TPC-E, TPC-H

Workload traces

Workload	Trace length	Storage arrays	Total disks
IM-DB	25 min	5 x RAID-10	34
MSN-DB	24 hrs	10 x RAID-10	46
EMAIL-DB	2 hrs	4 x RAID-10	34
BLOB-DB	24 hrs	10 x RAID-10	46
TPC-C	6 min	14 x RAID-0	392
TPC-E	17 min	12 x RAID-0	336
TPC-H	1.5 hrs	4 x RAID-0	36

Workload trace observations

- Data file I/Os dominate
 - Log traffic is 11-12% for BLOB-DB, MSN-DB
 - < 2% for others
- Traced servers provisioned differently
 - -34 392 spindles
- Need to normalize load "per unit storage"
 - We normalize by data size, e.g. IOPS/GB

Workload metrics extracted

- Peak non-sequential request rate (IOPS)
- Peak sequential transfer rate (MB/s)
- Peak-to-mean ratios (for IOPS, MB/s)
- Data set size (GB)
 - Based on highest LBN accessed in trace
- Sequential fraction of I/Os
- Read/write ratio

Peak IOPS v data size (log-log)

I/O rate v transfer rate (log-log)

IOPS v data size

- Order-of-magnitude differences
 - Between all workloads (online & TPC)
- But, servers provisioned differently
 - TPC-C had 10x the spindles of EMAIL-DB
- We should look at load per unit storage
 - IOPS/GB, not IOPS/traced server
- IOPS and MB/s highly correlated
 - SQL Server uses mostly 8KB requests

A X 30 WO 100 Research

IOPS/GB (peak IOPS)

IOPS/GB (log scale)

Peak-to-mean load ratios

Online workloads have ...

- much lower IOPS/GB than TPC
 - Even when considering peak IOPS
 - Except IM-DB: roughly same as TPC-C
- higher peak/mean ratios than TPC-C,E
 - Except IM-DB
 - TPC-H comparable to BLOB-DB, MSN-DB
 - But for different reasons (TPC-H has phases)
 - EMAIL-DB has very high peak/mean ratio

R/w ratio and sequentiality

Time variation: BLOB-DB

Time variation (MSN-DB)

Summary

- R/w ratio, sequentiality vary hugely
 - Some workloads close to TPC benchmarks
 - But differ on other metrics (like IOPS/GB)
- Online workloads have time variation
 - Periodic (diurnal, hourly)
 - Noise (high-frequency variation)
 - Load spikes
- TPC benchmarks do not have this notion

Outline

- Motivation
- Online workload analysis
- Conclusion

Analysis summary

- Online workloads vary widely
 - Differ from TPC benchmarks and each other
 - IM-DB is the most "TPC-like"
 - Sometimes like TPC-C, sometimes like TCP-E
 - Still not a great match
- Low IOPS/GB ratio even at peak
- High peak-to-mean ratios
- Time variation in load

How do we measure perf?

- Current benchmarks not representative
 - For these workloads
- Devise new benchmarks?
 - Workloads also vary widely among each other
 - Would need one benchmark per service
- Measure using I/O trace replay?
 - Effective, but has its limitations

Trace replay advantages

- Captures properties of real workload
- We used traces to drive many evaluations
 - Disk spin-down → depends on idle times
 - Burst absorbtion → depends on burstiness
 - SSD v disk → depends on IOPS/GB
- Benchmarks would not have worked here

Trace replay limitations

- Trace replay captures real workload
- But has limitations vis-a-vis benchmarks
 - I/O trace replay only measures disk resources
 - "Open loop" problems
 - Hard to scale (up or down)
 - Not standardized for comparison of systems

Future directions

- End-to-end tracing
 - All resources (CPU, network, user think time)
- Parameterize the benchmarks
 - Set IOPS/GB, r/w ratio, ... to measured values
 - Need to allow orders of magnitude variation
 - Need to model/express "time variation"
- Trace repository a la IOTTA
 - Maybe TPC can help set this up?