
Benchmarking Database
Performance in a Virtual
Environment

Sharada Bose, HP
sharada_bose@hp.com

Priti Mishra, Priya Sethuraman, Reza Taheri, VMWare, Inc.
{pmishra, psethuraman, rtaheri}@vmware.com

Agenda/Topics

Introduction to virtualization

Performance experiments with benchmark derived from TPC-C

Performance experiments with benchmark derived from TPC-E

Case for a new TPC benchmark for virtual environments

Variety of virtualization technologies
IBM

System Z/VM and IBM PowerVM on the Power Systems

Sun

X/VM and Zones

HP

HP VM

On the X86 processors

Xen and XenServer

Microsoft Hyper-V

KVM

VMware ESX

 Oldest (2001) and largest market share

 Where I work! So, focus of this talk

Why virtualize?

Server consolidation

The vast majority of server are grossly underutilized

Reduces both CapEx and OpEx

Migration of VMs (both storage and CPU/memory)

Enables live load balancing

Facilitates maintenance

High availability

Allows a small number of generic servers to back up all servers

Fault tolerance

Lock-step execution of two VMs

Cloud computing! Utility computing was finally enabled by

Ability to consolidate many VMs on a server

Ability to live migrate VMs in reaction to workload change

How busy are typical servers?

Results of our experiment:

8.8K DBMS transactions/second

60K disk IOPS

Typical Oracle 4-core installation:

100 transactions/second

1200 IOPSLock-step execution of two VMs

Hypervisor Architectures

Xen and Hyper-V

Very Small Hypervisor

General purpose OS in parent partition
for I/O and management

All I/O driver traffic going thru parent OS

Xen/Viridian

Drivers Drivers

Virtual
Machine

Virtual
Machine

Dom0 (Linux)
or

Parent VM
(Windows)

Drivers

Dom0 or Parent Partition Model

Drivers Drivers

Virtual
Machine

Virtual
Machine

General
Purpose OS

Drivers

Drivers Drivers

Virtual
Machine

Virtual
Machine

Drivers Drivers

Virtual
Machine

Virtual
Machine

Drivers

Virtual
Machine

Drivers

Virtual
Machine

Drivers
Vmware ESX

ESX Server

Small Hypervisor < 24 mb

Specialized Virtualization Kernel

Direct driver model

Management VMs
Remote CLI, CIM, VI API

Binary Translation of Guest Code

Translate guest kernel code

Replace privileged instrs with safe “equivalent”
instruction sequences

No need for traps

BT is an extremely powerful technology

Permits any unmodified x86 OS to run in a VM

Can virtualize any instruction set

BT Mechanics

Each translator invocation

Consume one input basic block (guest code)

Produce one output basic block

Store output in translation cache

Future reuse

Amortize translation costs

Guest-transparent: no patching “in place”

translator

input
basic block

Guest

translated
basic block

Translation cache

Guest

VMkernel

Physical
Hardware

Virtualization Hardware Assist

More recent CPUs have features
to reduce some of the overhead
at the monitor level

Examples are Intel VT and
AMD-V

Hardware-assist doesn’t remove
all virtualization overheads:
scheduling, memory
management and I/O are still
virtualized with a software layer

The Binary Translation monitor
is faster than hardware-assist
for many workloads

VMware ESX takes advantage
of these features.

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System
Scheduler

Virtual NIC Virtual SCSI

Performance of a VT-x/AMD-V Based VMM

VMM only intervenes to handle exits

Same performance equation as classical trap-and-
emulate:

overhead = exit frequency * average exit cost

VMCB/VMCS can avoid simple exits (e.g., enable/disable
interrupts), but many exits remain

Page table updates

Context switches

In/out

Interrupts

Qualitative Comparison of BT and VT-x/AMD-V

 BT loses on:

system calls

translator overheads

path lengthening

indirect control flow

 BT wins on:

page table updates (adaptation)

memory-mapped I/O (adapt.)

IN/OUT instructions

no traps for priv. instructions

 VT-x/AMD-V loses on:

exits (costlier than “callouts”)

no adaptation (cannot elim. exits)

page table updates

memory-mapped I/O

IN/OUT instructions

 VT-x/AMD-V wins on:

system calls

almost all code runs “directly”

VMexit Latencies are getting lower…

 VMexit performance is critical to hardware assist-based virtualization

 In additional to generational performance improvements, Intel is
improving VMexit latencies

Virtual Memory (ctd)

 Applications see contiguous virtual address space, not physical memory

 OS defines VA -> PA mapping

Usually at 4 KB granularity

Mappings are stored in page tables

 HW memory management unit (MMU)

Page table walker

TLB (translation look-aside buffer)

Process 1 Process 2

Virtual
Memory

VA

Physical
Memory

PA

0 4GB 0 4GB

TLB fill
hardware

VA PA
TLB

%cr3

VA→PA mapping

. . .

Virtualizing Virtual Memory
Shadow Page Tables

VMM builds “shadow page tables” to accelerate the mappings

Shadow directly maps VA -> MA

Can avoid doing two levels of translation on every access

TLB caches VA->MA mapping

Leverage hardware walker for TLB fills (walking shadows)

When guest changes VA -> PA, the VMM updates shadow page tables

Virtual
Memory

Physical
Memory

VA

PA

VM 1 VM 2

Process 1 Process 2Process 1 Process 2

Machine
Memory

MA

2nd Generation Hardware Assist
Nested/Extended Page Tables

VA MA
TLB

TLB fill
hardware

guest

VMM

Guest PT ptr

Nested PT ptr

VA→PA mapping

PA→MA mapping

. . .

Analysis of NPT

MMU composes VA->PA and PA->MA mappings on the fly at
TLB fill time

Benefits

Significant reduction in “exit frequency”

No trace faults (primary page table modifications as fast as native)

Page faults require no exits

Context switches require no exits

No shadow page table memory overhead

Better scalability to wider vSMP

Aligns with multi-core: performance through parallelism

Costs

More expensive TLB misses: O(n2) cost for page table walk,
where n is the depth of the page table tree

Guest

VMkernel

Physical
Hardware

CPU and Memory Paravirtualization

Paravirtualization extends the
guest to allow direct interaction
with the underlying hypervisor

Paravirtualization reduces the
monitor cost including memory
and System call operations.

Gains from paravirtualization
are workload specific

Hardware virtualization
mitigates the need for some of
the paravirtualization calls

VMware approach:
VMI and paravirt-ops

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System
Scheduler

Virtual NIC Virtual SCSI

Monitor

TCP/IP

File
System

Guest

VMkernel

Physical
Hardware

Device Paravirtualization

Device Paravirtualization places
A high performance virtualization-
Aware device driver into the guest

Paravirtualized drivers are more
CPU efficient (less CPU over-
head for virtualization)

Paravirtualized drivers can
also take advantage of HW
features, like partial offload
(checksum, large-segment)

VMware ESX uses para-
virtualized network and storage
drivers

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File SystemScheduler

vmxnet

pvscsi

TCP/IP

File
System

vmxnet

pvscsi

Paravirtualization

For performance

Almost everyone uses a paravirt driver for mouse/keyboard/screen
and networking

For high throughput devices, makes a big difference in performance

Enabler

Without Binary Translation, the only choice on old processors

 Xen with Linux guests

Not needed with newer processors

 Xen with Windows guests

Today’s visualization benchmarks

VMmark

Developed by VMware in 2007

De facto industry standard

84 results from 11 vendors

SPECvirt

Still in development

Will likely become the virtualization benchmark

But not a DBMS/backend server benchmark

vConsolidate

Developed by IBM and Intel in 2007

vApus Mark I from Sizing Server Lab

vServCon developed for internal use by Fujitsu Siemens Computers

VMmark

Aimed at server consolidation market

A mix of workloads

 Tile is a collection of VMs executing a set of diverse workloads

Workload Application Virtual Machine Platform
Mail server Exchange 2003 Windows 2003, 2 CPU, 1GB RAM,

24GB disk

Java server SPECjbb®2005-
based

Windows 2003, 2 CPU, 1GB RAM,
8GB disk

Standby server None Windows 2003,1 CPU, 256MB RAM,
4GB disk

Web server SPECweb®2005-
based

SLES 10, 2 CPU, 512MB RAM, 8GB
disk

Database server MySQL SLES 10, 2 CPU, 2GB RAM, 10GB
disk

File server dbench SLES 10, 1 CPU, 256MB RAM, 8GB
disk

VMmark client workload drivers
Client 0

ESX
18 VMs

Client 1
Files

Mail

Web Java Order EntryOLTP Database

Files

Mail

Web Java Order EntryOLTP Database

Files

Mail

Web Java Order EntryOLTP Database

Files

Mail

Web Java Order EntryOLTP Database
Client 2

Files

Mail

Web Java Order EntryOLTP Database

Files

Mail

Web Java Order EntryOLTP Database

Three Tiles

Number of VMmark Submissions

0

10

20

30

40

50

60

70

80

90

Q3

2007

Q4

2007

Q1

2008

Q2

2008

Q3

2008

Q4

2008

Q1

2009

Q2

2009

Q3

2009

C
u

m
u

la
ti

v
e

N
u

m
b

e
r

VMmark is the de-facto Virtualization Benchmark

VI 3.5.x

vSphere 4

(as of 8/4)

So why do we need a new benchmark?

Most virtual benchmarks today cover consolidation of diverse
workloads

None are aimed at transaction processing or decision support
applications, the traditional areas addressed by TPC
benchmarks.

The new frontier is virtualization of resource-intensive
workloads, including those which are distributed across multiple
physical servers.

None of the existing virtual benchmarks available today
measure the database-centric properties that have made TPC
benchmarks the industry standard that they are today.

But is virtualization ready for a TPC benchmark?

The accepted industry lore has been that databases are not
good candidates for virtualization

In the following slides, we will show that benchmarks derived
from TPC workloads run extremely well in virtual machines

We will show that there exists a natural extension of existing
TPC benchmarks into new virtual versions of the benchmarks

Databases: Why Use VMs for databases?

Virtualization at hypervisor level provides the best
abstraction

Each DBA has their own hardened, isolated, managed sandbox

Strong Isolation

Security

Performance/Resources

Configuration

Fault Isolation

Scalable Performance

Low-overhead virtual Database performance

Efficiently Stack Databases per-host

First benchmarking experiment

Workload: Pick a workload that is:

A database workload

OLTP

Heavy duty

A workload that everybody knows and understands

So we decided on a benchmark that is a fair-use implementation of
the TPC-C business model

 Not compliant TPC-C results. Results cannot be compared to
official TPC-C publications

Configuration, Hardware

1 Gigabit Network switch

8-way Intel server

4-way Intel client

4Gb/sec Fibre channel
switch

EMC CX3-80, 240
drives

EMC CX3-40, 30 drives

EMC CX3-80, 240
drives

Configuration, Benchmark

The workload is borrowed from the TPC-C benchmark; let us
call this the Order Entry Benchmark

A batch benchmark; there were up to 625 DBMS client
processes running on a separate client computer, generating the
load

7500 warehouses and a 28GB SGA

We were limited by the memory available to us; hence a DB size
smaller than the size required for our throughput. With denser
DIMMs, we would have used a larger SGA and a larger database

Our DBMS size/SGA size combination puts the same load on the
system as ~17,000 warehouses on a 72GB-system

Reasonable database size for the performance levels we are seeing

Disclaimers

ACHTUNG!!!

All data is based on in-lab results w/ a developmental version of ESX

Our benchmarks were fair-use implementations of the TPC-C and
TPC-E business models; our results are not TPC-C|E compliant
results, and not comparable to official TPC-C|E results. TPC
Benchmark is a trademark of the TPC.

Our throughput is not meant to indicate the absolute performance of
Oracle and MS SQL Server, or to compare their performance to
another DBMSs. Oracle and MS SQL Server were simply used to
analyze a virtual environment under a DBMS workload

Our goal was to show the relative-to-native performance of VMs, and
the ability to handle a heavy database workload, not to measure the
absolute performance of the hardware and software components
used in the study

Results: Peak

The VM throughput was 85% of native throughput

Impressive in light of the heavy kernel mode content of the
benchmark

Results summary for the 8-vcpu VM:

Configuration Native VM

Throughput in business
transactions per minute

293K 250K

Disk IOPS 71K 60K

Disk Megabytes/second 305 MB/s 258 MB/s

Network packets/second 12K/s receive

19K/s send

10K/s receive

17K/s send

Network
bandwidth/second

25Mb/s receive

66Mb/s send

21Mb/s receive

56Mb/s send

Results:
ESX4.0 vs. Native Scaling

VM configured with 1,
2, 4, and 8 vCPUs

In each case, ESX was
configured to use the
same number of
pCPUs

Each doubling of
vCPUs results in ~1.9X
increase in throughput

Relative to 2p-ESX
throughput

SQLServer Performance Characteristics

 Non-comparable implementation of TPC-E

Models a brokerage house

Complex mix of heavyweight transactions

Metric 4VCPU VM

Database size 500 GB

Disk IOPS 10500

SQLServer buffer cache 52 GB

Network Packets/sec 7,500

Network Throughput 50 Mb/s

Hardware configuration for tests on vSphere 4.0

8-way AMD
server

4 Gb/s Fiber Channel
switch

EMC CX3-40, 180 drives

4-way and 8-
way Intel
clients

1 Gb direct-attach

Resource intensive nature of the 8-vCPU VM

Metric Physical Machine Virtual Machine

Throughput in transactions

per second*

3557 3060

Average response time of

all transactions**

234 milliseconds 255 milliseconds

Disk I/O throughput (IOPS) 29 K 25.5 K

Disk I/O latencies 9 milliseconds 8 milliseconds

Network packet rate

receive

Network packet rate send

10 K/s

16 K/s

8.5 K/s

8 K/s

Network bandwidth receive

Network bandwidth send

11.8 Mb/s

123 Mb/s

10 Mb/s

105 Mb/s send

SQL Server Scale up performance relative to native

36

At 1 & 2 vCPUs, ESX is 92 % of native performance

Hypervisor able to effectively offload certain tasks to idle cores.

flexibility in making virtual CPU scheduling decisions

4 vCPUs , 88% and 8 vCPUs 86 % of native performance

SQL Server Scale out experiments

37

Throughput increases linearly as we add up to 8vCPUs in four VMs

Over-committed, going from 4 to 6 VMs (1.5x), performance rises 1.4x

Scale out overcommittment fairness

38

 Fair distribution of resources to all eight VMs

Benchmarking databases in virtual environments

We have shown database are good candidates for virtualization

But no formal benchmark

Can benchmark a single VM on the server

IBM’s power series TPC disclosures

Need a TPC benchmark to cover the multi-VM case

It is what the users are demanding!

Proposal 1

Comprehensive database virtualization benchmark

Virtual machine Configuration:

System should contain a mix of at least two multi-way CPU
configurations, for example an 8-way server result might contain 2x2
vCPU and 1x4 vCPU VMs

Measure the cpu overcommitment capabilities in hypervisors by
providing an overcommitted result along with a fully committed result.

Both results should report throughput of individual VMs.

Workloads used

Each VM runs homogenous or heterogeneous workloads of a mix of
database benchmarks, e.g., TPC-C, TPC-H and TPC-E.

Consider running a mix of operating systems and databases.

Proposal 1

Advantages

Comprehensive database consolidation benchmark

Disadvantages

Complex benchmark rules may be too feature-rich for an industry
standard workload

Proposal 2

Virtualization extension of an existing database benchmark

Virtual Machine configuration:

System contains a mix of homogenous VMs, for example an 8-way
server might contain 4x2 vCPU VMs

The number of vCPUs in a VM would be based on the total number
of cores and the cores/socket on a given host

 E.g., an 8-core has to be 4 2-vCPU VMs; a 64-core 8 8-vCPU VMs

The benchmark specification would prescribe the number of VMs
and number of vCPUs in each VM for a given number of cores

Workloads used

Homogeneous database workload, e.g., TPC-E, in each VM

Proposal 2

Advantages

Simple approach provides users with a wealth of information about
virtualized environments that they do not have currently

The simplicity of the extension makes it possible to develop a new
benchmark quickly, which is critical if the benchmark is to gain acceptance

Disadvantages

Unlike Scenario 1, this approach does not emualte consolidation of diverse
workloads

Features of virtual environments such as over-commitment not part of the
benchmark definition

Proposal 3

Benchmarking multi-tier/multi-phase applications

map each step in a workflow (or, each tier in a multi-tier
application) to a VM. (For large-scale implementations, mapping
may instead be to a set of identical/homogeneous VMs.)

From a benchmark design perspective, a challenging exercise
with a number of open questions, e.g.:

Does the benchmark specify strict boundaries between the tiers?

Are the size and number of VMs in each layer parts of the
benchmark spec?

Does the entire application have to be virtualized? Or, would
benchmark sponsors have freedom in choosing the components that
are virtualized? This question arises due to the fact that support and
licensing restrictions often lead to parts not being virtualized.

Recommendation

TPC benchmarks are great, but take a long time to develop

Usually well worth the wait

But in this case, timing is everything

So, go for something simple: an extension of an existing benchmark

Proposal #2 fits the bill

Not esoteric, is what most users want

Can be developed quickly

Based on a proven benchmark

Yes, it is really that simple!

Conclusions

Virtualization is a mature technology in heavy use by customers

Databases were the last frontier; we have shown it’s been conquered

Benchmarking community is behind the curve

Badly in need of a TPC benchmark

A simple extension of TPC-E is:

A natural fit

Easy to produce

Timely

Great price performance!

