A Performance Study of Event Processing Systems

Marcelo R.N. Mendes Pedro Bizarro Paulo Marques (mnunes, bizarro, pmarques)@dei.uc.pt

First TPC Technology Conference on Performance Evaluation & Benchmarking: TPCTC'09

Conventional BI Data Flow

Complex Event Processing (CEP) Overview

Event Processing Model

- Unbounded Event Streams;
- Events manipulated in main memory;

CEP system role:

- Filter/Correlate Events;
- Compute Aggregates;
- Detect Event Patterns;
- Identify/Predict Trends;
- Produce Alerts

Motivation

- Event Processing applications are usually timecritical;
- No standard benchmarks for CEP;
- Still little detailed performance information:
 - What are the performance bottlenecks?
 - Will performance degrade gracefully?

Performance Study

Microbenchmarks

- 1. Selection and Projection
- 2. Aggregations / Windowing
- 3. Joins
- 4. Pattern Detection
- 5. Large Time-Based Windows
- 6. Adaptability
- 7. Multiple queries

Fundamental Operations

Important Quality Attributes

Synthetic dataset;

Tests and Methodology

- 3 CEP systems were tested: Engines "X", "Y" and "Z";
- Tests consisted in:
 - A ramp-up phase (1 minute)
 - Measurement Interval (at least 10 minutes)
- One continuous query at a time
- Load Generation, Collection of Results:
 - FINCoS Framework (http://bicep.dei.uc.pt)
- Testbed:

TPCTC: August, 2009

- HW: 1 server with 2 quad-core processors, 16GB RAM
- SW: Windows 2008, x64 OS; Sun Hotspot x64 JVM.

Test Setup

Performance Results

1. Data Reduction

- Selection: A stream of events is filtered according to a given predicate;
 - Factor under Analysis: Predicate Selectivity
- Projection: Removal of attributes from events
 - Factor under Analysis: Number of Input attributes
- Metric: Throughput

1. Selection

REMARKS:

- Very-High Throughputs
- Limitations at client API's

2. Aggregations/Windowing

- Factors Under Analysis:
 - Aggregation Function: AVG, MAX, STDEV, MEDIAN
 - Window Definition:
 - Size;
 - Policy;
 - <u>EXAMPLE</u>: Keep the last 3 events from a given stream:

Metric: Throughput

2. Aggregations/Windowing

- Performance Issues:
 - Maintenance of jumping windows on engine X;
 - Maintenance of sliding windows on engine Z;
 - Computation of MAX function on engine Y.

3. Join Tests

- 1. Window-to-Window
 - -> Factors under Analysis: Window Size and Join Selectivity
- 2. Stream to In-memory table
 - -> Factor under Analysis: Table Size
- 3. Stream to Database table
 - -> Factor under Analysis: Table Size
- Join Selectivity: 100%;
- Number of Attributes:
 - Stream: 4
 - Table: 10
 - Output: 13
- Metric: Throughput.

3. Join Tests

CEP engine is responsible for maintaining the table in main memory and for performing the join.

Table is stored in an external database; data is retrieved through parameterized queries to DBMS

6. Adaptability Tests

6. Adaptability Tests

- Definition of Adaptability Metrics:
 - Maximum Latency;
 - Latency Degradation;
 - Recovery time;

Results			
itcsuits	Engine		
Metric	X	Υ	Z
Max Latency	4,7 sec	1,3 sec	1,5 sec
Latency	×82,8	×57,4	×5,9
Degradation			
Recovery Time	43 sec	1,3 sec	1,5 sec

6. Adaptability Tests

7. Multiple Queries Tests

- 1st Test: Identical Queries
 - Goal: Assess Computation Sharing;
 - Metric: Throughput.
- 2nd Test: Overlapping Windows
 - Goal: Assess Memory Sharing;
 - Metric: Memory Consumption.
- Factor under analysis: Number of Queries.

7. Multiple Queries Tests

<u>CONCLUSION</u>: Only one engine showed evidences of implementing some kind of query plan sharing, but only for <u>identical</u> queries.

Final Remarks

- Aggregations and window policies: some surprises;
- Access to historical data might represent a bottleneck;
- Long GC pauses in CEP engines implemented in memory-managed languages hinder performance;
- Very different adaptability characteristics;
- None/Incipient Query Sharing;
- In General: still room for performance improvements.

Thanks!