
Benchmarking Adaptive Indexing
Goetz Graefe, Stratos Idreos, Harumi Kuno, Stefan Manegold

CWI Amsterdam
The Netherlands
first.last@cwi.nl
www.cwi.nl

HP Labs
Palo Alto, CA

first.last@hp.com
www.hpl.hp.com

TPCTC 2010
Singapore

Adaptive Indexing???Adaptive Indexing???

Index Creation vs. Query Processing (1/4)

+No investment
+ No storage cost
+ No maintenance overhead
- Base-line performance

Index Creation vs. Query Processing (2/4)

Index Creation vs. Query Processing (2/4)

Index Creation vs. Query Processing (3/4)

Index Creation vs. Query Processing (3/4)

Index Creation vs. Query Processing (4/4)

Index Creation vs. Query Processing (4/4)

Database Cracking

“Incremental Quick-Sort”

Adaptive Merging

� Create partitioned B-tree using quicksort on cache-sized slices
� Partition have overlapping key ranges

13,16,4,9,2,12,7,1,19,3,14,11,8,6

Adaptive Merging

4,9,13,16 1,2,7,12 3,11,14,19 6,8

� Merge requested key range
into single partition

Q1: 10 < R.A < 14: 4,9,16 1,2,7 3,14,19 6,8
11,12,13

Q2: 7 < R.A <= 16: 4 1,2,7 3,19 6
8,9,11,12,13,14

� Database Cracking:

� Designed for byte-addressable storage and consecutive arrays

� Lower overhead (time) on first query

“Comparison”

� Lower overhead (time) on first query

� Slower convergence (number queries) to complete index

� Adaptive Merging:

� Traditional benchmarks consider only query costs

� Schnaitter, Polyzotis; ICDE 2009:
� Benchmark for online index creation

Benchmarking: Offline & Online Indexing

� Benchmark for online index creation
� Considers also index creation costs
� Distinct alternating phases

� Query processing (incl. monitoring)
� Index creation

� Metrics:
� Time (cost) to recognize promising indexes
� Time (cost) to build indexes

Benchmarking: Adaptive Indexing

� Indexes built continuously, not at once
� No distinct index construction costs
� No distinct phases (index construction / query processing)
� No distinct query costs (without / with index)

� Incremental indexing adds overhead to each query
� Overhead changes over time
� Cluster amount of overhead to identify different stages

Adaptive Indexing: Stages

� Planting:
� Investments exceed benefits
=> Per-query costs higher than scan-based baseline

planting nursing growing
harvesting

(4)

(data structures
initialized)

(refinement
complete)

=> Per-query costs higher than scan-based baseline
� Nursing:

� Investments start paying off
=> Per-query costs lower than scan-based baseline;

Cumulative costs over all queries still higher than scan-based baseline
� Growing:

� Index structure starts converging to an optimal state
=> Also cumulative costs drop below scan-based baseline;

First queries that do not require indexing side effects
� Harvesting:

� Index structure fully optimized
=> No more indexing required

Benchmarks: Workload Characteristics

� Dynamic environments:
� Workload W: sequence of phases: W = {P1, ..., Pn}
� Phase Pi: sequence of queries and scheduling discipline: Pi = (Qi,Si)

� Stages occur per phase
� First phase starts with planting stage
� Subsequent phases may skip initial stages

� Benefit from previous phases, e.g., due to partial overlap
� A phase may not reach all stages

� E.g., too short to reach optimal state

Benchmarks: Workload Parameters

� Range and distribution of keys within phases: focused vs. spread-out

� Length of phases

� Overlap between phases

� Query diversity per phase: number of columns & tables used

� Concurrency / scheduling

Benchmarks: Metrics

� Per-query & cumulative costs:

� Time

Tuples accessed� Tuples accessed

� Power consumption

� ...

� Convergence / length of phases:

Sample Implementation and Experiments

� Database Cracking:
� Implemented in MonetDB (www.monetdb.org)

� Adaptive Merging:
� Simulation experiments
� (Implementation in MonetDB in progress)

� 1000 range selects over 10M tuples
� 9/10 randomly in first half of domain
� 1/10 randomly in second half of domain

Adaptive Indexing Stages: Database Cracking

MonetDB

DB Cracking

Planting
Stage

Nursing stage begins
Re

sp
on

se
 tim

e (
mi

cro
 se

cs)

DB Cracking

Growing stage begins

Presorted MonetDB
Presorting cost = 3.5 secs

Query sequence

Re
sp

on
se

 tim
e (

mi
cro

 se
cs)

Scan

Adaptive merging

Nursing stage begins

Planting stage begins
Adaptive Indexing Stages: Adaptive Merging

Adaptive merging

Harvesting stage begins

Growing stage begins

Index search

Adaptive Merging: Multiple Phases, shifting focus

Thank you!

