
EXRT:
Towards a Simple Benchmark for 

XML Readiness Testing 
Michael Carey, Ling Ling,             

Matthias Nicola*, and Lin Shao
UC Irvine

*IBM Corporation
TPCTC 2010
Singapore



XML (in the Enterprise)
• Early roots in document markup
– SGML � XML

• Now widely used in enterprise data scenarios
– Internet-based information exchange
– Web services and SOA infrastructure– Web services and SOA infrastructure

• Result is a strong (emerging) need to store and 
query large collections of XML documents
– Data retention and sharing
– Auditing and compliance requirements
– Simpler, more flexible database design

1



“It’s Time for XML End-to-End!”
– Susan Malaika, IBM

2



“XQuery is the Answer!”
• Claim: RDBMS support for XML and XQuery has 

matured to where it can/should be relied on
– Suggested that XML data integration middleware 

should move to pushing XQuery (or SQL/XML) to 
RDBMSs, instead of SQL, for data retrieval

– Dana Florescu, Oracle

RDBMSs, instead of SQL, for data retrieval
– Suggested that XML-typed columns ought to be used 

for XML storage and caching
• Related beliefs
– Time to seriously look at binary XML transport
– Time to center a “no more tiers” approach to Web 

applications around XML in the back and front ends

3



So … Are They Right?
• XML/XQuery support seems to be getting there
– XML support provided by most major RDBMSs

• SQL Server, DB2, Oracle, Sybase, …
– Native XML DBMSs are available as well

• Tamino, MarkLogic, EMC xDB (X-Hive), …• Tamino, MarkLogic, EMC xDB (X-Hive), …
• In particular, native XML support is becoming 

common in commercial RDBMS systems
– From tables + shredding to XML columns + XQuery
– Native storage formats now co-exist with tabular 

storage in several XML-enabled RDBMSs

4
� Time to investigate these capabilities “for real”…!



Experimental XML Readiness Test
• Existing XML benchmarks (also see paper)

– TPoX, X-Mach1: multi-user, application-oriented, scales            
by number of documents (think TPC-C ☺)

– XMark, XPathMark, X007: single-document, single-user, 
exercise all aspects of XPath/XQuery using an artificial 
application (i.e., micro-benchmarks)application (i.e., micro-benchmarks)

– MBench, MemBeR: abstract single-document micro-
benchmarks

• Enter the EXRT benchmark
– Focus on core “data XML” operations (think Wisconsin ☺)
– Single-user micro-benchmark, scales by number of documents
– Target audience: XML application developers (as opposed       

to XQuery engine builders, as in other micro-benchmarks)
– Cover XQuery and SQL/XML, shredded and native XML

5



EXRT Schema (TPoX-based XML)
• TPoX: CustAcc, Order, Security schemas
• Why CustACC instead of our own synthetic 

database?  Because it’s close enough!
– Exercises both simple and complex types

Includes both single- and multi-valued nesting

6

– Includes both single- and multi-valued nesting
– Has both unique and non-unique attributes and 

elements for indexing and querying
• In addition, a labor-saving approach

– Data generator and workload (query) driver 
available for use (and extension)



EXRT Schema (Shredded)

7

CustAcc documents:
• Customer data
• Account details
• Holdings information

(Total of 4-20 KB apiece)



EXRT Data Storage and Queries
• Three storage options considered:
– Shredded tables: Normalize CustAcc XML schema into 

the 12 tables depicted on the previous slide
– XML column: Store CustAcc XML instances, one per 

row, in an RDB table with one XML-typed column

8

row, in an RDB table with one XML-typed column
– XML database: Store CustAcc XML instances, one per 

document, in a collection in a native XML DB
• Two XML query language options considered:
– SQL/XML: Can apply to the first two options above
– XQuery: Can apply to the latter two options above

(Note: Examples coming in a few slides…)



EXRT Benchmark Operations
(Queries I)

Op Description Width
Q1 Given customer IDs, fetch the customers’ minimal profile –

consisting of their customer ID, title, first and last names, and suffix
1

Q2 Given customer IDs, fetch the customers’ basic profile – 2

9

Q2 Given customer IDs, fetch the customers’ basic profile –
adding middle and short names and languages to the minimal profile 

2

Q3 Given customer IDs, fetch the customers’ complete profile –
adding e-mail info, addresses, streets, and phones to the basic profile

4

Q4 Given customer IDs, fetch all of the customers' information –
including all of the info about their accounts and holdings

8

Note: Two variants of Q4 tested:
• Just fetch XML – Q4
• Reconstruct XML – Q4(re)



EXRT Query Result Shape

Height=2

Height=4

Width

10

Customer ID

Width=1

Width=4

Width=8

Width=12

Height(Sele
ctivity)



EXRT Benchmark Operations
(Queries II)

Op Description Width
Q5 Given customer IDs, get the complete info for all of their accounts 5
Q6 Given account IDs, get the complete info for the accounts 4
Q7 Given account IDs, get all of the info for the account-owning customers 12

11

Q7 Given account IDs, get all of the info for the account-owning customers 12

Q5
CustID

Q6 Q7

AcctIDAcctID



EXRT Benchmark Operations
(Queries III)

Op Description Width
Q7 Get the average number of accounts for customers of a given nationality 1
Q8 Given a country name and a tax rate, return the average account 

balance for customers in the specified country who have a tax rate 
3

12

balance for customers in the specified country who have a tax rate 
greater than the specified tax rate



EXRT Benchmark Operations
(Basic Updates)

Op Description Width
I Given an XML string containing all of the info for a new customer, insert 

the new customer into the database
12

13

D Given a customer ID, delete all info about this customer and his or her 
accounts

12



EXRT Benchmark Operations
(Node Updates I)

Op Description Width
NI1 Given a customer ID and an XML string with a new Address element, 

add the new address to the specified customer
3

NI2 Given a customer ID and XML strings with a new Address element and  
a new e-mail address, add both to the specified customer

4

14

a new e-mail address, add both to the specified customer
NI3 Given a customer ID and XML strings with a new Address element,         

a new e-mail address, and a new account, add them to the customer
8

ND1 Given a customer ID plus an integer positional indication (1, 2, or 3), 
delete the indicated Address node from the customer’s list of addresses

3

ND2 Given a customer ID plus positional indicators for their address and      
e-mail lists, delete the indicated Address and Email nodes

4

ND3 Given a customer ID, an account ID, and positional indicators for their 
address and e-mail lists, delete the indicated Account, Address, and 
Email nodes

8



EXRT Benchmark Operations
(Node Updates II)

Op Description Width
NU1 For a customer ID, update the customer’s last contact date 1
NU2 Given a customer ID, a contact date, and the name of a new account 

officer, update the last contact date, upgrade the customer to premium
2

15

officer, update the last contact date, upgrade the customer to premium
NU3 Given a customer ID, a contact date, the name of a new account officer, 

and an XML string with a list of addresses, update the customer’s last 
contact date, upgrade the customer to premium status, update the 
assigned account officer’s, and replace the customer’s current list of 
addresses with the new list

5



Q1: XQuery on XML 

16



Q1: SQL/XML on XML 

17



Q1: SQL/XML on Relations

18



Benchmarking Procedure
• Data generated using the TPoX data generator

– 600K CustAcc document instances
• EXRT brackets the performance of each query

– Cold runs: clear buffer pool, use new parameters
– Hot runs: run same query with same parameters– Hot runs: run same query with same parameters

• A few procedural details
– Vendor-specific buffer clearing procedure
– JDBC (or equivalent) API with parameterized queries    

(Note: see paper for a bit of fine print in this area)
– Parameterized query times exclude compilation time
– Query parameter values pre-computed (offline) and 

then used at runtime

19



Benchmarking Procedure (cont.)
• Tested 3 systems – RDB1, RDB2, and XDB – all configured 

“identically”
– Dell 3.16 GHz Intel Core 2 Duo D8500 CPU
– 4GB of main memory, two 320 GB 7200 RPM disks
– Striped Linux file system spanning both disks
– Each DB system gets to use all of memory– Each DB system gets to use all of memory

• In terms of the tested software:
– RDB2 was used out of the box
– XDB was used out of the box (except for cache clearing)
– RDB1 needed one patch applied to address a JDBC driver issue 

with XML result sets, required a bit of trickery to work around an 
index statistics bug for binary double indexes, and needed small 
changes in a few query predicates to assist its query optimizer

20



Q1-Q4: Customer Queries (1)

21



Q1-Q4: Customer Queries (60)

22



Q5-Q7: Path Queries (60)

23



Updates: Customer Insert/Delete

24

Note:
•Cold, single-document insert/delete tests difficult to conduct,   
especially comparably across systems.
•Possible alternative would be to measure steady state performance 
for a large stream of inserts (e.g., thousands of documents).



Summary
• EXRT is a micro-benchmark for testing a DB system’s readiness 

for enterprise data XML usage
– Shredded versus native XML storage
– Performance of various commercial systems
– Saw similarities, differences, and a few bugs

• Initial performance lessons from applying EXRT

25

Initial performance lessons from applying EXRT
– Shredded versus native is width-dependent
– Native storage faster for inserts, for non-constructing retrievals,   

and for wide query results
– Need better steady-state update performance methodology

• Possible futures (us or you ☺)
– Share an implementation of EXRT
– Try EXRT on more commercial systems
– Do something EXRT-like for content-oriented use cases



Acknowledgements
• We would like to sincerely thank certain engineers from 

each of the vendors whose systems we tested; their help 
and feedback were both invaluable…!
– Person 1
– Person 2

26

– Person 2
– Person 3

(☺)


