XWeB: the XML Warehouse Benchmark

Hadj Mahboubi and Jérôme Darmont

CEMAGREF Clermont-Ferrand -- Université de Lyon (ERIC Lyon 2) hadj.mahboubi@cemagref.fr -- jerome.darmont@univ-lyon2.fr

September 17, 2010

Context

New trends for business data warehousing and analysis

Objective and contribution

- Existing XML benchmarks are not decision-oriented
 - Database schemas do not bear the multidimensional structure
 - Workload do not features typical OLAP-like queries

Objective

- Performance evaluation using a benchmark
 - A test XML data warehouse and its associated XQuery decision support workload

Contribution

- Complete and extend an early version of XWeB
 - Based on TPC-H
 - Complemented with XML irregular structures
 - Extended workload

Objective and contribution

- Existing XML benchmarks are not decision-oriented
 - Database schemas do not bear the multidimensional structure
 - Workload do not features typical OLAP-like queries

Objective

- Performance evaluation using a benchmark
 - A test XML data warehouse and its associated XQuery decision support workload

Contribution

- Complete and extend an early version of XWeB
 - Based on TPC-H
 - Complemented with XML irregular structures
 - Extended workload

Objective and contribution

- Existing XML benchmarks are not decision-oriented
 - Database schemas do not bear the multidimensional structure
 - Workload do not features typical OLAP-like queries

Objective

- Performance evaluation using a benchmark
 - A test XML data warehouse and its associated XQuery decision support workload

Contribution

- Complete and extend an early version of XWeB
 - Based on TPC-H
 - Complemented with XML irregular structures
 - Extended workload

Outline

- Introduction
- Related work
- 3 Reference XML Warehouse Model
- 4 XWeB Specifications
- 5 Sample Experiments
- 6 Conclusion and perspectives

Relational Decision Support Benchmarks

OLAP Council – APB-1 Benchmark (OLAP Council, 1998)

- Data warehouse schema: four dimensions structured around Sale facts
- Simple to understood and to use, but limited

Transaction Processing Performance Council – TPC standard benchmarks (TPC, 2008)

- TPC-H: classical product-order-supplier database model and 22 SQL-92 parameterized queries
- TPC-DS: TPC-DS: constellation schema, four classes of query templates

Star Schema Benchmark – SSB (O'Neil et al., 2009)

 A simpler alternative to TPC-DS, query workload with both functional and selectivity features

Data Warehouse Engineering Benchmark - DWEB (Darmont et al., 2007)

- Helps generate various ad-hoc synthetic data warehouses and typical OLAP query workloads
- Conceived for testing the effect of design choices or optimization techniques
- Extensive set of parameters

XML Benchmarks

XML micro-benchmarks

- Michigan Benchmark (Runapongsa et al., 2006) and MemBer (Afanasiev et al., 2005)
- Asses the individual performances of basic operation: projection, selection, join...
- Specialized and not adapted for decision support application evaluation

XML application benchmarks

- X-Mach1 (Böhme and Rahm, 2003), XMark Schmidt et al., 2003, XOO7 (Bressan et al., 2003) and XBench (Yao et al., 2004)
- Compare and evaluate the global performances of XML-native or compatible DBMSs

Outline

- Introduction
- 2 Related work
- 3 Reference XML Warehouse Model
- 4 XWeB Specifications
- 5 Sample Experiments
- 6 Conclusion and perspectives

Reference XML Warehouse Model

XML web warehouses	XML documents warehouses	XML data warehouses
Xyleme (2001)	Baril & Bellahsène (2003)	Pokorný (2002)
Golfarelli et al. (2001)	Nassis <i>et al.</i> (2005)	Hümmer <i>et al.</i> (2003)
Vrdoljak et al. (2003)	Rajugan <i>et al.</i> (2005)	Rusu <i>et al.</i> (2005)
	Zhang <i>et al.</i> (2005)	Park <i>et al.</i> (2005)
		Boussaïd et al. (2006)

XML data warehouses

- Represent both facts and dimensions
- Converge toward a unified model
- Differ in the way dimensions are handled and in the number of XML documents used to store facts and dimensions

XML data warehouse reference model

- Performance evaluation (Boukraa et al., 2006)
- Represents facts in one single XML document and each dimension in one XML document
- Allows representing irregular XML data structures

Reference XML warehouse model

(a) facts_f.xml

(b) dimension_d.xml

Reference XML warehouse model

dw-model.xml

Outline

- Introduction
- Related work
- Reference XML Warehouse Model
- 4 XWeB Specifications
- 5 Sample Experiments
- 6 Conclusion and perspectives

Principle

Why deriving from TPC-H

- To acknowledge the importance of TPC benchmarks' standard status
- To fulfill Gray's simplicity criterion for a good benchmark
- To benefit from TPC-H's features, e.g., dbgen

XWeB components

- Database and workload models
- XWeB do not include ETL features
- The data Warehouse is a set of XML documents; loading can be timed

Database Model

Parameterization

Size (S): helps control warehouse size

Depends on

- Scale factor (SF): inherited from TPC-H
- Density (D): helps control the overall size of facts independently from the size of dimensions
 - $D{=}1$ \longrightarrow all possible dimension references are present in the fact document

Estimated as

$$S = S_{dimensions} + S_{facts}$$

- $S_{dimensions} = \sum_{d \in \mathcal{D}} |d|_{SF} \times nodesize(d)$, does not change where SF is fixed
- $S_{facts} = \prod_{d \in \mathcal{D}} |h_1^d|_{SF} \times D \times fact_size$, depends on D

Additional parameters (in fact instances)

- Probability of missing values (P_m)
- Probability of element reordering (P_0)

Schema Instantiation

Dimension data

- 1 Obtained from dbgen as flat files (size is tuned by SF)
- 2 Matched to dw-model.xml document $\longrightarrow dimension_d.xml$ ($d \in D$) documents

Part category selection algorithm

- Names are taken from TPC-H and organized in three arbitrary hierarchy levels
- Non-strict hierarchy: names are interrelated thought rollup and drill-down relationships
- Non-covering hierarchy: randomly assign to each part element several categories at any level

Workload Model

Workload queries and parameterization

- Twenty typical aggregation queries for decision support
- Structured in increasing order of query complexity
- Subdivided into five categories: simple reporting queries, 1, 2 and 3-dimension cubes; and complex hierarchy cubes
- Boolean execution parameters: RE, 1D, 2D, 3D and CH

Query workload

Group	Query	Specification	
Reporting	Q01	Min, Max, Sum, Avg of f_quantity and f_totalamount	
	Q02	f_quantity for each p_partkey	
	Q03	Sum of f_totalamount	
1D cube	Q04	Sum of f_quantity per p_partkey	
	Q05	Sum of f_quantity and f_total-amount per m_monthname	
	Q06	Sum of f_quantity and f_total-amount per d_dayname	
	Q07	Avg of f_quantity and f_total-amount per r_name	
2D cube	Q08	Sum of f_quantity and f_total-amount per c_name and p_name	
	Q09	Sum of f_quantity and f_total-amount per n_name and p_name	
	Q10	Sum of f_quantity and f_total-amount per r_name and p_name	
	Q11	Max of f_quantity and f_total-amount per s_name and p_name	
3D cube	3D cube Q12 Sum of f_quantity and f_total-amount per c_name, p_name		
	Q13	Sum of f_quantity and f_total-amount per c_name, p_name and y_yearkey	
	Q14	Sum of f_quantity and f_total-amount per c_name, p_name and y_yearkey	
Complex hierarchy	archy Q15 Avg of f_quantity and f_total-amount per t_name		
	Q16	Avg of f_quantity and f_total-amount per t_name	
	Q17	Avg of f_quantity and f_total-amount per p_name	
	Q18 Sum of f_quantity and f_total-amount per p_name Q19 Sum of f_quantity and f_total-amount per t_name		
Q20 Sum of f_quantity and f_total-amount per t_name		Sum of f_quantity and f_total-amount per t_name	

Workload Model

Execution protocol

- Load test: load the XML warehouse into an XML DBMS;
- Performance test:
 - cold run executed once (to fill in buffers), w.r.t. parameters RE, 1D, 2D, 3D and CH;
 - warm run executed NRUN times, still w.r.t. workload parameters.

Performance metric: response time

- Load test, cold and warm runs are timed separately
- Global average, minimum and maximum execution times; and standard deviation
- Possibility to derive composite metrics

Outline

- Introduction
- 2 Related work
- Reference XML Warehouse Model
- 4 XWeB Specifications
- 5 Sample Experiments
- 6 Conclusion and perspectives

Experiments

Studied systems

- XML native systems: XQuery decision support query formulation facilities
- Five systems: BaseX, eXist, Sedna, X-Hive and xIndice
- Highlight the performance differences among the studied systems
- Parameters $P_m = P_0 = 0$

Total size of XML documents

SF	D	Number of facts	Warehouse size (KB)
1	$1/14 \times 10^{-7}$	500	1710
1	$1/7 imes 10^{-7}$	1000	1865
1	$2/7\times10^{-7}$	2000	2139
1	$3/7 imes 10^{-7}$	3000	2340
1	$4/7 imes 10^{-7}$	4000	2686
1	$5/7\times10^{-7}$	5000	2942
1	$6/7 imes 10^{-7}$	6000	3178
1	10^{-7}	7000	3448

Load Test

Fig. Load test results

Performance Test

Fig. RE performance test results

Performance Test

Fig. 1D performance test results

Performance Test

Fig. CH performance test results

Outline

- Introduction
- Related work
- Reference XML Warehouse Model
- 4 XWeB Specifications
- Sample Experiments
- 6 Conclusion and perspectives

Conclusion and perspectives

Conclusion

- XWeB: first XML decision support benchmark
- Gray's criteria: Relevant, Portable, Scalable, Simple
- Experiments to illustrate XWeB's relevance
- Also previously used to experimentally validate indexing and view materialization strategies

Perspectives

- Include update operations to improve workload relevance
- Filter factor and experimental feedbacks Tune and broaden the benchmark scope and representativity
- Performance metrics: composite (as TPC benchmarks') and qualitative metrics (query result correctness)

Conclusion and perspectives

Conclusion

- XWeB: first XML decision support benchmark
- Gray's criteria: Relevant, Portable, Scalable, Simple
- Experiments to illustrate XWeB's relevance
- Also previously used to experimentally validate indexing and view materialization strategies

Perspectives

- Include update operations to improve workload relevance
- \bullet Filter factor and experimental feedbacks \longrightarrow Tune and broaden the benchmark scope and representativity
- Performance metrics: composite (as TPC benchmarks') and qualitative metrics (query result correctness)