
TPC-H Analyzed
Hidden Messages and Lessons

Learned from an Influential Benchmark

Peter Boncz (CWI)

Thomas Neumann (TUM)

Orri Erling (Openlink Systems)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Why Read This Paper

 “TPC-H cheat sheet for DBMS architects”

◦ based on years of experience of three database

system design lead architects, who have

optimized their systems for TPC-H

◦ in-depth explanation of 28 crucial challenges in

the benchmark, with pointers to address these

 Inspire a benchmark design methodology

◦ “choke point” based

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Database Benchmark Design

Desirable properties:

 Relevant.

 Representative.

 Understandable.

 Economical.

 Accepted.

 Scalable.

 Portable.

 Fair.

 Evolvable.

 Public.

 Jim Gray (1991) The Benchmark Handbook for Database

 and Transaction Processing Systems

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)

 Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

 Karl Huppler (2009) The Art of Building a Good Benchmark

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Stimulating Technical Progress

 An aspect of ‘Relevant’

 The benchmark metric

◦ depends on,

◦ or, rewards:

solving certain

technical challenges

“Choke Point”

(not commonly solved by technology at benchmark
design time)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

◦ arise from Data (distribs)+Query+Workload

◦ there may be different technical solutions to

address the choke point

 or, there may not yet exist optimizations (but should

not be NP hard to do so)

 the impact of the choke point may differ among

systems

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

 “well-chosen”

◦ the majority of actual systems do not handle

the choke point very well

◦ the choke point occurs or is likely to occur in

actual or near-future workloads

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

This Paper: TPC-H choke points

 Even though TPC-D was designed without

specific choke point analysis

◦ more informal SQL query contribution process

 It contains a whole lot of them!

◦ many more than SSB

◦ considerably more than XMark

◦ not sure about TPC-DS (yet)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

TPC-H choke point areas (1/3)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

TPC-H choke point areas (2/3)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

TPC-H choke point areas (3/3)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone, n_name,

 c_address, c_comment

ORDER BY revenue DESC

Q10

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone,

 c_address, c_comment, n_name

ORDER BY revenue DESC

Q10

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP1.4 Dependent GroupBy Keys

 Functional dependencies:

 c_custkey c_name, c_acctbal, c_phone,

c_address, c_comment, c_nationkey n_name

 Group-by hash table should exclude the

colored attrs less CPU+ mem footprint

 in TPC-H, one can choose to declare

primary and foreign keys (all or nothing)

◦ this optimization requires declared keys

◦ Key checking slows down RF (insert/delete)

Exasol:

“foreign key check” phase after load

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

◦ Most tuples will *not* find a match

◦ Probing (index, hash) is the most expensive

activity in TPC-H

 Can we do better?

◦ Bloom filters!

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

2G cycles 29M probes cost would have been 14G cycles ~= 7 sec

1.5G cycles 200M probes 85% eliminated

probed: 200M tuples

result: 8M tuples

 1:25 join hit ratio

Q21

Vectorwise:

TPC-H joins typically accelerate 4x

Queries accelerate 2x

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP3.2 Physical Locality By Key

 most frequent selection in TPC-H is range

predicate between date columns

 there is correlation between these

 l_shipdate = o_orderdate + random[1:121]

 l_commitdate = o_orderdate + random[30:90]

 l_receiptdate = l_shipdate + random[1:30]

 techniques to use:

◦ clustered index

◦ partitioned table (by range)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP3.2 Physical Locality By Key

 can the optimizer derive a range on l_commitdate from l_shipdate?

◦ supposing a clustered index on l_shipdate

◦ e.g. Zone Maps, MinMax indices, Small Materialized Aggregates

 can the optimizer derive a range on o_orderdate from l_shipdate?

SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue,
o_orderdate, , o_shippriority

FROM customer, orders, lineitem

WHERE

 c_mktsegment = '[SEGMENT]‘ and c_custkey = o_custkey

 and l_orderkey = o_orderkey

 and o_orderdate < date '[DATE]‘

 and l_shipdate > date '[DATE]'

GROUP BY l_orderkey, o_orderdate, o_shippriority

ORDER BY revenue DESC o_orderdate;

Microsoft SQLserver magic flag

DATE_CORRELATION_OPTIMIZATION

Q3

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP4.1 Raw Expression Arithmetic

How fast is a query processor in computing, e.g.

 Numerical Arithmetic

 Aggregates

 String Matching

SELECT

 l_returnflag, l_linestatus, count(*),

 sum(l_quantity),sum(l_extendedprice),

 sum(l_extendedprice*(1-l_discount)),

 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),

 avg(l_quantity),avg(l_extendedprice),avg(l_discount),

FROM lineitem

WHERE l_shipdate <= date '1998-12-01' - interval
'[DELTA]' day (3)

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus

Q1

SIMD? Interpreter Overhead?

Vectorwise, Virtuoso, SQLserver cstore vectorized execution

Hyper, Netteza, ParAccel JIT query compilation

Kickfire, ParStream hardware compilation (FPGA/GPU)

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP5.2 Subquery Rewrite
SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part

WHERE p_partkey = l_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

 and l_quantity <(SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey)

This subquery can be extended with restrictions from
the outer query.

 SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

Q17

Hyper:

CP5.1+CP5.2+CP5.3

results in 500x faster

Q17

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

CP6.3: Re-Use

- For the Throughput score

- RF del/ins streams may be run in advance

- Subsequently, concurrent query streams

- Read-only system state

- Limited # parameter bindings

 Duplicate queries, Overlapping queries

Query Result Caching Opportunity

Oracle previous runs used a query cache

MonetDB Recycling, partial query re-use

TPC does not tolerate query caching options/directives

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Conclusion

 Choke Points: a concept in Benchmark Design

◦ trying to create relevant queries

◦ instrument to steer towards certain breakthroughs

 Full Analysis for TPC-H

◦ “cheat sheet” for improving systems on TPC-H

◦ 28 choke points

 have influenced many systems

www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf

Thanks! / Questions?

Peter Boncz (CWI)

Thomas Neumann (TUM)

Orri Erling (Openlink Systems)

www.cwi.nl/~boncz/tpctc2013_boncz_neu

mann_erling.pdf

