
© 2010 VMware Inc. All rights reserved

Architecture and Performance characteristics of a

PostgreSQL implementation of the

TPC-E and TPC-V workloads

Andrew Bond (Red Hat), Doug Johnson (InfoSizing), Greg
Kopczynski (VMware), and H. Reza Taheri (VMware)

2 of 26

Agenda/Topics

 Virtualization and virtualization benchmarks

 Historical perspective of TPC-V

 TPC-V design considerations and characteristics

 TPC-V architecture

 End-to-end Reference Kit

 Prototyping results, and PostgreSQL characterization

 Benchmark roadmap

3 of 26

Virtualization and need for a database benchmark

 Virtualizing servers allows:

• consolidation

• Reduces both CapEx and OpEx

• Migration of VMs (both storage and CPU/memory)

• Enables live load balancing

• Facilitates maintenance

• High availability and fault tolerance

 Cloud computing is powered by virtualized servers

 Databases VMs are were the last frontier for virtualization

• Initial hesitation to put enterprise databases on VMs

• Followed by today’s push towards virtualizing everything

 We need a benchmark to model all this!

4 of 26

Today’s virtualization benchmarks

 VMmark

• Developed by VMware in 2007; now on version 2.5

• De facto industry standard with nearly 200+ publications from 11 vendors

• Released kit only runs on ESX, but can be modified for other hypervisors

• Models consolidation of lightly loaded VMs with diverse workloads

 SPECvirt_sc2010/SPECvirt_sc2013

• Industry standard, with 35 results from 4 vendors

• Models consolidation of lightly loaded VMs with diverse workloads

 TPC-VMS

• No results yet

• Models consolidation of 3 identical database VMs

• Test sponsors can use one of 4 existing TPC benchmark workloads

- Limited in scope of what virtualization features get tested

+But does not require a new kit

5 of 26

History of TPC-V

 2009 VLDB: We need a benchmark that:

• Models virtualized databases

• Is industry standard

 2010 VLDB: Proposal for a benchmark

• Steal TPC-E’s workload, schema, specification

• Baby bear # of VMs

• Model elasticity of load

 2012 VLDB: Status of the benchmark development

• Developing a complete, end-to-end , publicly-available kit

• Kit runs on PostgreSQL

• Finalized benchmark architecture

• Some early result

 This pace is lightening fast by TPC standards!

6 of 26

Components of a TPC-V configuration

Driver

System Under Test

Tier A & B

Group A, Set1

Tier A
VM1

Tier B

 VM2
Tier B

 VM3
Data

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

Group B, Set 1
Data

Data

Group D, Set 1
Data

Group C, Set 1

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

TL
TU

TO
TR
MF

TS
MW
SD

BV
CP
DM

Tier A
VM1

Tier B

 VM2
Tier B

 VM3

Tier A
VM1

Tier B

 VM2
Tier B

 VM3

Tier A
VM1

Tier B

 VM2
Tier B

 VM3

7 of 26

Sets and Groups

 VMs with heterogeneous load levels

• Always 4 Groups @10%, 20%, 30%, 40%

 But the number of Sets per Group
grows with performance

• Small systems have 1 Set per Group

• Larger servers divide each Group’s load
among 2, 3, … Sets

 Total number of VMs on the server:

• 12 on small and medium-sized servers

• 24 on today’s high end

• 36-48 on high end in 5-10 years

Group: A B C D

Average contribution

to overall throughout

10% 20% 30% 40%

Tier B VM2,

DSS queries

Tier B VM3,

OLTP transactions

Tier A VM1, app logic code

Stored procedure calls

Transactions

arriving from

the driver

system

Virtual disks Virtual disks

Group A, Set 1 VM1 A1 VM2 A1

VM3 A1

Group B , Set 1 VM1 B1 VM2 B1 VM3 B1

Group C , Set 1 VM1 C1 VM2 C1 VM3 C1

Group D , Set 1 VM1 D1 VM2 D1 VM3 D1

3 VMs of a TPC-V

Set

4 TPC-V Groups, each with 1 Set

8 of 26

Elasticity

 Load of each VM ranges by as much
as 16X in ten 12-minute Phases

• Elasticity

• Oversubscription

Period

Group

A

Group

B

Group

B

Group

D

1 10% 20% 30% 40%

2 5% 10% 25% 60%

3 10% 5% 20% 65%

4 5% 10% 5% 80%

5 10% 5% 30% 55%

6 5% 35% 20% 40%

7 35% 25% 15% 25%

8 5% 65% 20% 10%

9 10% 15% 70% 5%

10 5% 10% 65% 20%

Average 10% 20% 30% 40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

D
iv

is
io

n
 o

f
o

v
e

ra
ll

th
ro

u
g

h
p

u
t
o

v
e

r
th

e

4
 G

ro
u

p
s
 o

f
T

P
C

-V

Group A Group B Group C Group D

Elasticity phase

9 of 26

Design Considerations

 Driver code in Java; transaction-specific code in C++ to
match EGen/VGen

 Walk before you run: a TPC-E kit first

 ODBC allows easier database swapping

• Albeit with a performance cost

• We can replace ODBC with native calls for best performance

 Develop initial kit on PostgreSQL

• But ODBC makes it possible to run against other databases

 Make the kit available to anyone, subject to a EULA

10 of 26

Java/C++ Class Interaction

COMMON

CustomerEmulator

DataMaintenance

DMSUT

MEESUT

CESUT

MktExchange

SutConnector TradeOrderDB

BrokerVolumeDB

CustomerPositionDB

TradeStatusDB

TxnHarnessSen

dToMarket

Java

C/C++

Driver SUT (Tier A)

JNI

RMI
C/C+

+

VCe

VMee

VConnector

VDriver

11 of 26

Request Code Execution Path

12 of 26

Driver components

13 of 26

Status of the kit

 We have a complete, end-to-end TPC-E kit

• This is TPC-E, so 1 database, static load

• Scripts to create the schema and populate the database

• All the necessary DDL/DML

• C++ code to implement the business logic

• Java driver to drive the load and collect and process the results

• Handles multiple Sets and Groups, and elasticity

• Linux shell scripts to start and monitor the run, and collect stats

 The kit implements all the multi-VM and elasticity features of
TPC-V

• Need to change the code for 2 transactions that are different in TPC-V

 Busy prototyping!

14 of 26

TPC-E results with a single database VM

 Single VM/database (emulating TPC-E)

 4-socket HP ProLiant DL580 G7 server

• 2.40GHz Intel Xeon E7-4870 (WestmereEX) CPUs

• So total of 40 cores/80 hyperthreads

• 1TB of memory

• Disclosed TPC-E result: 2,454 tpsE

• Other results on similar servers as high as 3,XXX tpsE

• Two EMC VNX5700 disk arrays. 38 SSDs and 88 spinning disk drives

 Running TPCE on a VM with 16-vCPU, 280GB Tier B VM

• So using 1/5th of the hardware resources

 Software versions:

• VMware vSphere 5.1

• RHEL 6.1

• PGSQL 9.2.2

• unixODBC 2.2.14

15 of 26

TPC-E prototyping results

 Measuring 198 tpsE on the 16-vCPU VM

• Performance is decent for this stage of development

• 1/13th of disclosed results on this server, but using 1/5th the resources

• So our performance is 1/3 to 1/2 of commercial databases

• 2 orders of magnitude higher than dbt5 experimental results

• 85% CPU utilization

• 19K IOPS, 212MB/sec

 I/O rate appears to be our biggest problem

• High IOPS even though we have cut the DB size by 60%

• IOPS/tran around 2X what commercial database does

• PostgreSQL buffer management and file system relationship
unknowns

• Lack of clustered indexes

• On-disk size appears as much as 20% larger

16 of 26

PostgreSQL tuning: File systems

 This data is from when we separated the OLTP and DSS
transactions into two different VMs

 Definitely should separate the log and data file systems

• So data blocks don’t get flushed every time we write to the log

• 6% more throughput

• Lower response times

 Use ext4 for data

• ext3 is fine for log

 DSS Trans wrqm/s r/s w/s rkB/s wkB/s avgrq-
sz

avgqu-
sz await

1 file system Data +log 1830 11151 2767 138602 33956 25 30 2.14

2 file systems
data 2406 12350 2278 181902 18737 27 40 2.71

log 343 0.34 134 1 17854 264 0.3 1.87

 OLTP Trans wrqm/s r/s w/s rkB/s wkB/s avgrq-
sz

avgqu-
sz await

1 file system Data +log 403 542 476 7682 5552 27 5.1 4.75

2 file systems
Data 194 860 145 15613 1357 34 6.3 6.29

log 1 0.04 225 0.16 3066 27 0.3 1.15

17 of 26

PostgreSQL tuning: File systems, continued

 PostgreSQL folks like to encourage you to use the file system

• No! They insist that relying on the filsys buffer cache is the only way to go

 Being an old database hand, you have to show me why this is
so

• Double buffering wastes memory

• Once you miss in the DBMS cache, you pay most of the price in OS cycle
whether or not you hit in the buffer cache

 I have been trying to max out PostgreSQL shared_buffers

• Ignoring the PostgreSQL book advice

• Hard to shrink file system buffer cache when raising shared_buffers

• End up swapping

• I have to reboot the VM

 But going from 34GB of shared_buffers to 200GB improves
performance only 5%

• PostgreSQL/filsys interaction problem?

• Or TPC-E benefits from DBMS cache reaching diminishing returns?

18 of 26

PostgreSQL tuning: checkpoints

 Watch the number of 16MB checkpoint_segments

• On a high throughput system, this will decide checkpoint frequency

• Default of only 3 checkpoint_segments way too low

• Even with 128 checkpoint_segments, we were checkpointing every
2 minutes

• Raised to 1,920 on the largest VM to checkpoints every 30 minutes

Checkpoint metric 128 segments 5,120 segments

checkpoints_timed 0 1

checkpoints_req 15 0

buffers_checkpoint 4,437,177 956,174

buffers_clean 14,069 852,893

buffers_backend 46,297 39,297

buffers_alloc 24,831,473 23,749,499

19 of 26

PostgreSQL tuning: Index-only scans

 TPC-E transactions need clustered indexes

• All published TPC-E results have used MS SQL Server

• They create clustered indexes on ALL 33 tables

• (Secondary) indexes not used very often

 PostgreSQL does not have clustered indexes

• Every data access has to read both the index block and the data block

• Indexes are not much smaller than tables

• Plus, PostgreSQL on-disk footprint is larger

 Switched to Index-only scans with PostgreSQL 9

• But works only if all the columns named in the query are in the index

• So have to create many, multi-column indexes

• Index size grows quickly

• After a week of runs, TRADE data blocks grew 4%, index blocks 40%

20 of 26

PostgreSQL tuning: Index-only scans, continued

 Note the index size for TRADE_HISTORY

• Even having Index-only scans doesn’t reduce how much data we juggle

Table MS SQL PostgreSQL

Table

size

Index

size

of

indexes

Table

size

Index

size

of

indexes

CASH_TRANSACTION 125GB 0.45GB 1 146GB 140GB 1

DAILY_MARKET 8.7GB 3.6GB 1 11GB 4.7GB 1

HOLDING_HISTORY 67GB 35GB 2 93GB 125GB 2

NEWS_ITEM 21GB 0.0003GB 1 20GB 0.003GB 1

SETTLEMENT 68GB 0.3GB 1 91GB 78GB 1

TRADE 153GB 82GB 3 176GB 135GB 3

TRADE_HISTORY 96GB 0.25GB 1 168GB 124GB 1

21 of 26

Server configuration for TPC-V prototyping

 Carve out the 80-thread, 1TB server into:

• 4 Groups, each with 1 Set of 3 VMs

• 12 VMs

• 4 Tier A VMs (VM1s of Groups A-D) with 2GB of memory and 3-8 vCPUs

• These Tier A VMs have low resource demands

• 4 DSS Tier B VMs (VM2s of Groups A-D) with 88-278GB of memory and 4-
16 vCPUs

• High I/O load (hence more memory to cache more of the database)

• 4 OLTP Tier B VMs (VM3s of Groups A-D) with GB of 39-78GB of memory
and 12-40 vCPUs

• Low I/O load but high CPU demands

• Overall CPU allocation is overcommitted by 2X (168 vCPUs)

• No memory overcommit

• Not recommended for database VMs

22 of 26

Throughput and CPU utilization of 12 VMs with static load

 No elasticity

• Static load to all VMs over
the 2 hours

 Throughput droped with
time as CPU util% rises

• Something wrong with VM
C3. It utilization keeps rising,
even above VM D3, despite
static load

• Early results. Our databases
are better tuned now

 Server 85-95% utilized

0

200

400

600

800

1000

1200

1400

1600

1
1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1

C
P

U
 u

ti
li
z
a
ti

o
n

 o
u

t
o

f
in

d
iv

id
u

a
l
V

M
s

Minutes

Per VM CPU utilization

VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

VM D3

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

T
h

ro
u

g
h

p
u

t

T
o

ta
l
C

P
U

 u
s
a
g

e
 (

o
u

t
o

f
8
,0

0
0
%

)

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

23 of 26

Throughput and CPU utilization of 12 VMs with elasticity

 Hypervisor has to react to
16X variation in load

• Change how much CPU is
allocated to each VM

 Overall CPU util% and
throughput matches the
static case in Phases 1 and 6
(no I/O bottleneck)

 The dips are the sign of the
benchmark doing its job!!

• Caused by storage for a VM
getting overwhelmed

• When a VM’s storage can’t keep
up, its throughput drops

• Kit maintains the ratios between
all Groups, so overall throughput
drops

0

500

1000

1500

2000

2500

1
1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1

C
P

U
 u

ti
li
z
a
ti

o
n

 o
u

t
o

f
in

d
iv

id
u

a
l
V

M
s

Minutes

Per VM CPU utilization

VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

VM D3

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

T
h

ro
u

g
h

p
u

t

C
P

U
 u

s
a
g
e
 o

u
t

o
f

a
 p

o
s
s
ib

le
 8

,0
0
0
%

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

24 of 26

Status of the kit and of the benchmark

 Functional specification in good shape, waiting for kit completion

 End-to-end kit running complete TPC-E workload

 Kit running all novel TPC-V functions, waiting for rewriting 2
transactions

 Would like to see more internal TPC prototyping before releasing
to the wild

 Much PostgreSQL tuning remains

• Both CPU cycles and IOPS/tran are over 2X of commercial databases

• Will engage the community

• Is the community interested in matching commercial databases?

 Will consider engaging groups outside TPC in the development
process

• Not typical for the TPC

• But we will make the case for it if we can demonstrate serious commitment

25 of 26

Future directions

 Complete the kit!

• Make it available for prototyping

 Complete the spec

• Kit will become publicly available when the benchmark is released

• Need to release this benchmark in 2014

 Single-system virtualization no longer exciting!

 Can we model a cloud-like, multi-server config?

• The benchmark and the kit already deal with elastic load to 1 server.
Extend this to elasticity and migrations across multiple servers

• Intuitively, a simple step from where we are

• But need to come up with migration scenarios w/o too much
choreographing

• Avoid deep pocket escalation wars with bigger and bigger clusters

• Add deployment and provisioning

26 of 26

Questions?

