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Abstract. This paper describes the TPC-VMS (Virtual Measurement Single Sys-
tem) benchmark that leverages the TPC-C, TPC-E, TPC-H, and TPC-DS bench-
marks to provide a measure of database performance in a virtualized envi-
ronment.  TPC-VMS requires 3 identical TPC Benchmarks to be run in separate 
virtual machines, i.e. 3 TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3 TPC-DS 
VMs. The TPC-VMS performance metric is the minimum value of the three TPC 
performance metrics.  During the development phase, the workload was pro-
totyped to prove the viability of the benchmark.  At first glance TPC-VMS was 
considered a simple benchmark; however the prototyping effort uncovered a 
number of performance issues intrinsic to virtualization of database applica-
tions.  

 

1 Introduction 

Cloud computing delivers virtual processors, memory and storage to a com-

munity of end-users.  Key to the cloud is virtualization technology that pro-

vides a separate virtual machine environment for multiple users.   A number 

of benchmarks currently exist to test virtualization.  However there are few 

workloads that characterize large database performance in a virtualized envi-

ronment. TPC Benchmarks are the gold standard for large database perfor-

mance.   This paper describes the TPC-VMS (Virtual Measurement Single Sys-

tem) benchmark that employs the TPC-C, TPC-E, TPC-H, and TPC-DS bench-

marks to provide a measure of database performance in a virtualized envi-

ronment. 

2 Virtualization  

Virtualization provides separate virtual machine (VM) environments for mul-

tiple users.  Typically each VM includes an operating system and application 

code.  The VM provides security and isolation from other operating systems 
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and application code running in their own virtual machines.  A hypervisor 

provides the virtualization of the underlying hardware by managing the vir-

tual machines.    

2.1 Virtualization Benchmarks 

There are existing virtualization benchmarks such as SPECvirt_sc2010 [1], 

and VMmark[2].  The benchmarks have focused on smaller workloads where 

the virtualized environment consumes a fraction of a processor core.  Thus 

one processor core can support several Virtual Processors (VPs) that execute 

the workload inside the VM.  At the other extreme are database applications 

which may require several processor cores if not several processor sockets. 

There is a lack of benchmarks/workloads that characterizes large database 

performance in a virtualization environment.   The TPC-VMS Benchmark (Vir-

tual Measurement Single System) was created to address this issue. 

3 TPC-VMS 

The TPC Virtual Measurement Single System Specification [3], TPC-VMS, con-

tains the rules and methodology for measuring and reporting TPC Benchmark 

metrics running in a virtualized environment. TPC-VMS leverages the TPC-C, 

TPC-E, TPC-H and TPC-DS Benchmarks by adding the methodology and re-

quirements for running and reporting virtualization metrics.  TPC-VMS de-

fines four new benchmarks that are neither comparable to each other nor to 

the base benchmarks from which they are derived.  A TPC-VMS result is a 

standalone TPC result. There is no requirement to publish a result of the TPC 

Benchmark used as the basis for the TPC-VMS result. 

3.1 TPC-VMS Goals 

TPC-VMS answers the basic customer question “I have a number of older 

databases systems, can I consolidate the database systems onto one new 

server”?   TPC-VMS specifically addresses the consolidation issue by requiring 

multiple database virtual environments to be run on a single server.  During 

the development of TPC-VMS, the overriding criterion for TPC-VMS was 

“time to benchmark” as the need for a database virtualization benchmark 
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was deemed to be critical by the TPC members.  Thus there was a conscious 

decision to keep the benchmark simple. 

3.2 TPC-VMS Run Rules 

The TPC-VMS Specification leverages the existing TPC Benchmarks by using 

the existing workloads specified by the TPC-C, TPC-E, TPC-H, and TPC-DS 

Specifications.  Unless otherwise stated in the TPC-VMS Specification, the 

test sponsor must follow all requirements of the base TPC Benchmark Speci-

fication.  TPC-VMS requires 3 identical TPC Benchmarks to be run in a virtual-

ized environment, i.e. 3 TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3 TPC-DS 

VMs. A mixture of different TPC Benchmarks may be a more interesting 

workload, but was deemed too complex as the fundamental problem of 

“what is the metric” could not be resolved in a timely manner.  The number 

of VMs was chosen to be 3 as the minimum number of VMs to prove the 

point but small enough to reduce the complex task of performing a full TPC 

audit for each VM.  The TPC-VMS Specification includes a number of “ease of 

benchmarking” rules that can potentially reduce the work involved, but a full 

TPC audit is a non-trivial amount of work.  

3.3 TPC-VMS VSUT 

A TPC Benchmark typically defines a SUT or System Under Test, i.e. the 

hardware and software that is to be tested.  For TPC-VMS the VSUT or VMS 

System Under Test is defined as a superset of the base TPC Benchmark SUT.  

The VSUT includes a Consolidated Database Server that supports the virtual-

ization environment where the three VMs are run.  To prevent a test sponsor 

from taking advantage of the limited number of VMs, the Consolidated Da-

tabase Server is required to support a large number of VMs. Thus all I/O 

must be virtualized by either the hypervisor or via the I/O controllers manag-

ing the I/O devices. Without this requirement a test sponsor could simply 

partition the I/O by assigning an I/O device exclusively to each VM.  
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3.4 TPC-VMS Metric 

The TPC-VMS performance metric is the minimum value of the three perfor-

mance metrics for the three TPC Benchmarks run on the VSUT.  The TPC-VMS 

performance metric is reported by prefixing a “VMS” to the TPC Benchmark 

performance metric, e.g. VMStpmC, VMStpsE, VMSQphDS@ScaleFactor or 

VMSQphH@ScaleFactor.   The minimum of the three VMs was chosen as a 

simple means to ensure that all 3 VMs are using an equal amount of VSUT 

resources, i.e. the test sponsor is not gaming the results by running an 

asymmetric VM that ensures a higher result.  The test sponsor must aim to 

maximize the minimum result of the 3 VMs.  In order to do this the test 

sponsor must try to ensure that each VM uses an equal amount of VSUT re-

sources. A secondary reason was to ensure that a TPC-VMS result would not 

be comparable to an underlying TPC Benchmark result, e.g. a TPC-VMS TPC-C 

VMStpmC result is not comparable to a TPC-C tpmC result.  

4 TPC-VMS Prototype Effort 

As part of the TPC development process, prototype data is generated to en-

sure the viability of a benchmark.  The prototype results are presented to the 

TPC Development Subcommittee for review. The data is scrubbed of any 

product specific information as TPC membership is a consortium of compa-

nies that are competitors. Described here is the prototype work implement-

ed by Intel. The prototyping effort included both the TPC-E and TPC-H 

benchmarks. The test configurations were similar as were the findings re-

garding database performance in a virtualized environment.  For simplicity, 

only the TPC-E prototyping effort is described in this paper. 

At first glance the TPC-VMS benchmark appeared to be just a simple run of 3 

TPC benchmarks in a virtualized environment.  However the prototyping ef-

fort uncovered a number of performance issues intrinsic to virtualization of 

large databases applications. The performance knowledge gained was con-

sidered an excellent ROI for Intel’s investment in the TPC-VMS benchmark 

development. 
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4.1 Prototype Test Configuration 

The prototype setup is shown in Figure 1.  At the left are the client systems 

that drive the TPC-E benchmark.  The VMS System Under Test (VSUT) in the 

center is the server that implements the virtual environment and at the right 

are the storage subsystems. 

 

Figure 1 Prototype Setup 

The VSUT server is a 2-socket 4-core Intel® Xeon X5570® (Nehalem) system. 

The Intel Simultaneous Multithreading feature was enabled on the server. In 

order to collect consistent performance data the Intel Turbo Boost Technol-

ogy was disabled for all the runs described in this paper. The VSUT contained 

64 gigabytes of memory. A hypervisor or in the parlance of TPC-VMS the Vir-

tual Machine Management Software (VMMS) was used to divide the VSUT 

resources into multiple virtual machines (VMs), each hosting a database (DB) 

server. The Intel 82574 Ethernet controller in the VSUT server acts as the 

virtual network switch to the virtual network interface cards (VNIC) config-

ured for each of the VMs. A RS2PI008 Intel RAID controller attaches four 

Newisys storage bays containing the storage devices. 

The thee client machines are Intel Xeon X5570 systems, each of which run a 

benchmark driver (Bench), a Market Exchange Emulator (MEE) and a Cus-
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tomer Emulator(CE). The server and the clients are connected to each other 

through a 1GB network switch. 

4.2 Prototype Data 

As part of the prototype effort, we ran five scenarios as can be seen in Figure 

2. In the first scenario one database server ran on the native system. In the 

second scenario one VM was configured that spanned all physical memory 

and virtual processors (1VMx16VP). Similarly the third, fourth and fifth sce-

narios have 2 VMs with 8 Virtual Processors each (2VMx8VP), 3 VMS with 6 

Virtual Processors each (3VM*x6VP) and 4 VMs with 4 Virtual Processors 

(4VMx4VP). The VMs in each scenario are allotted an equal share of the 

memory, virtual processor resources and persistent storage. From the TPC-

VMS benchmark perspective, only the 3VM case is of interest. In this section 

we discuss all the scenarios to develop a better understanding of the bench-

mark. Note that all the results considered here are in-spec as per the TPC-E 

Specification. 

 

Figure 2 Relative VM vs. Native Performance 

The data values in Figure 2 indicate the relative throughput results (TPC-E 

transactions per second or tpsE) of the benchmark on each VM in compari-

son to Native result. The first scenario, with the database running on the 

Native system, gave the highest performance result, denoted by the 1.00 

value.  For the second scenario (one VM, 16 virtual processors and all re-

maining memory), throughput dropped by 16% when compared to the Na-
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tive throughput (1 – 0.84). The reasons for the performance degradation are 

discussed in Section 5. 

As for the remaining cases, the 2VMx8VP scenario showed the best result of 

all runs in a virtualized environment. Note that for scenarios with an even 

number of VMs running on this 2-socket system (i.e., 2VMx8VPs and 

4VMx4VPs scenario) throughput reported by each VM is almost identical to 

the other VMs in the system. However in the case of an odd number of VMs, 

(3VMx6VP scenario), we notice a high variation of throughput reported by 

each of the VMs. The second VM reported the highest relative throughput of 

the 3 VMs (0.36 of the Native), with the 1st and 3rd VMs reporting almost 

similar relative performance, 0.23 and 0.24 respectively.  As described in 3.4, 

the TPC-VMS benchmark requires the test sponsor to report the lowest 

throughput of the 3 VMs, 0.23 in this case. As noted in Figure 2, we conduct-

ed the 3 VM experiments with both over subscription - 6/6/6 VPs over 16 

logical processors and equal subscription - 6/5/5/ VPs over 16 logical proces-

sors.  Similar results were obtained in both the cases. The reasons for the 

asymmetrical performance are discussed in Section 5. 

5 Performance Issues 

The majority of the virtualization benchmarks existing in the industry run 

VMs with a small memory footprint and virtual processors that only utilize a 

fraction of a single processor core. The performance penalty of the virtualiza-

tion layer was generally observed to be 3-4%.  However for large database 

applications, the memory footprint is larger, memory accesses are more ran-

domized and the virtual processors consume all of the compute resources of 

a processor core.  TPC-VMS uncovered a few performance issues for large 

database applications running in a virtualized environment.  

5.1 Memory Address Translation Overhead  

In a virtualized environment, the hypervisor is the control system that runs 

on the host and abstracts the system’s physical resources (processor, 

memory and I/O) to the guest operating systems running in the virtual ma-

chines while retaining full control of the platform. Each guest OS thinks it is 
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running on its own individual machine. Virtualization of the memory is slight-

ly more complicated than in a native environment. The hypervisor must han-

dle three address spaces: 

 Host physical address (HPA): Physical address space of the physical 

system managed by the hypervisor 

 Guest physical address (GPA): The physical address space of the 

guest OS in the VM 

 Guest linear address (GLA): The virtual address space of the applica-

tions running under the control of the guest OS  

The hypervisor manages two levels of address translation. First is the transla-

tion from GLA space to GPA space. And second is the translation from GPA 

space to HPA space. To accelerate the address translation, hypervisors im-

plement in software shadow page tables that combine the two levels of ad-

dress translation. When a guest OS modifies a TLB that specifies the GLA to 

GPA translation, the hypervisor must substitute the shadow page HPA into 

the TLB thus ensuring the GLA to HPA translation. The shadow page table 

HPA substitution occurs on a page fault. Having the hypervisor code handle 

each and every page fault can be a major performance issue for applications 

that randomly access large amounts of memory. 

With the Intel VT-x/i technology [4], the above mentioned memory transla-

tion overhead is significantly reduced using hardware assisted memory man-

agement Extended Page Tables (EPT). When EPT is in use, memory addresses 

that would normally be treated as HPA without virtualization are now treat-

ed as GPA addresses. These GPA addresses are translated to HPA addresses 

in turn by traversing a set of EPT paging structures as shown in Figure 3 [5].  
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Figure 3 EPT page table walk 

EPT is optionally activated on VM entry and deactivated on VM exit. The ad-

vantages of EPT are multifold.  EPT handles memory management for VMs 

and hence avoids the need for the hypervisor to sync the shadow page ta-

bles. Previously shadow page tables had to be maintained for each guest 

process for every guest. Now only one EPT is required per VM. Hence the 

benefit of EPT scales as the number of VMs increases. However multiple EPT 

tables are traversed during each address translation, thus overhead due to a 

TLB miss is increased.  Also, the increase in the paging structures will cause 

an incrementing stress to the caching system, i.e. additional cache misses.   

For the Intel Xeon X5570 processor the EPT translation increases TLB miss 

latency by 1.9X.  In the Native scenario we observed 3.6 TLB (both instruction 

and data) misses per 1,000 instructions executed.  In the 1VMx16VP scenario 

we observed 4.2 TLB misses per 1,000 instructions executed.  Not only is the 

TLB miss latency longer due to the EPT translation, but the overall TLB miss 

rate increases due to the additional pressure on the cache caused by the EPT 

paging structures, hypervisor code and hypervisor data.  This in turn causes 

additional instruction and data cache misses for the overall application. 
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5.2 Database Memory Allocation 

When we analyzed TPC-E performance in 1, 2, 3 and 4 VM environments, we 

observed that as VMs were added the total free memory increased.  As VMs 

are added the amount of memory available to each VM should be the total 

memory minus any hypervisor memory divided by the number of VMs.  In 

each VM, memory is consumed by the OS, any background applications and 

the database.  The database was configured to pre-allocate all available 

memory using 2 megabyte large pages in order to minimize memory address 

translation overhead (Section 5.1).  The database memory was pre-allocated 

to reserve a small amount of memory for the guest OS to allocate to any new 

applications.  We observed that as VMs were added, the sum of all of the 

free memory in the VMs was increasing with the number of VMs.  For in-

stance, for 3 VMS nearly 10 gigabytes cumulative memory was left unused in 

the system that contained 64 gigabytes of memory.  

An in-house tool was used successfully in all VM scenarios to acquire almost 

all the VM’s memory.  Thus the virtualization environment was ruled out as 

cause of the ever increasing free memory.  The issue was eventually traced 

to a problem with the database memory allocation algorithm.  The database 

software allocation algorithm in each VM was leaving memory free culminat-

ing in an ever increasing total amount of free memory as the number of VMs 

increased.  The issue was overlooked in the Native scenario but easily identi-

fied in the virtualization scenarios. The issue has been reported to the data-

base software vendor. 

5.3 NUMA Memory Latency 

In a multi socket system, memory is distributed among processors such that 

latency of a memory access is determined by the memory location relative to 

a processor.  Memory local to a processor is accessed faster by the processor 

than memory local to another processor also called remote memory and 

hence the term Non Uniform Memory Access (NUMA).  For Nehalem proces-

sors latency due to a remote memory access is roughly 1.7 times the latency 

for a local memory access.  
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The percentage of local memory accesses versus all memory access is de-

fined as the NUMA locality for an application.  For the Native result in Figure 

2 the NUMA locality is 80%, indicating that on average 80% of the processor 

memory accesses were local.  Each processor is accessing its local memory 

80% of the time while 20% of the memory accesses are remote.  For the 1 

VM result in Figure 2, the NUMA locality is 48.5%, indicating that 51.5% of 

the memory accesses are remote.  Thus the memory access in the 

1VMx16VP case will on average be significantly slower than in the Native 

case. 

For the Native case, the high percentage of NUMA locality is due to man-

years of effort to optimize the database software for NUMA, i.e. ensure the 

software is NUMA aware.  The same effort must now be applied to the hy-

pervisor and VMs to ensure that they are NUMA aware in regards to the 

placement of virtual processors and virtual memory.  For small VMs that do 

not span multiple processors the issue is easily resolved.  However, latency 

due to poor NUMA locality is more conspicuous in cases where a VM spans 

multiple sockets.  The VM must be NUMA aware to ensure a Virtual Proces-

sor’s memory is allocated locally to the processor executing the VP. The hy-

pervisor must now consider NUMA as a factor to the VP scheduling policy 

such that a VP is not migrated from a processor that has high NUMA locality 

to a remote processor that will have poor NUMA locality.  

5.4 Asymmetrical 3 VM Results 

The experimental setup described in this paper contains 2 nodes (i.e., pro-

cessor sockets) with 4 cores each. Intel Hyper Threading technology feature 

was turned on and hence we had 16 logical processors (LP) in total. For the 

3VMx6VP scenario in Figure 2, each VM is assigned 6 virtual processors. 

When the first VM is started, it is scheduled to be run on the first processor 

acquiring 6 out of 8 LPs on the processor. Processor 0 is now the home node 

of the first VM. When the second VM is started, it is scheduled to be run on 

processor 1 acquiring 6 LPs on the processor. Now that we have only 4 LPs 

left unallocated in the system, starting a third VM with 6 VPs can cause re-

source contention issues. The third VM is scheduled by the hypervisor to be 

run on the processor 0 following a round robin policy. Since processor 0 is 
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the home node for both VM1 and VM3 and only VM2 runs on processor 1, 

processor 0 is oversubscribed and processor 1 is undersubscribed.  Conten-

tion for processor 0 cycles will cause the hypervisor to migrate VPs of VM1 

and VM3 to processor 1.   

A problem arises due to the hypervisor optimization to move all VPs to their 

home node or processor. For small VMs where the VPs consume a fraction of 

a processor core, this optimization is valid to ensure the highest performance 

as the VPs will benefit from shared cache and local memory accesses. For 

large VMs that span multiple processors the optimization to move all VPs to 

their home node introduces a performance degradation as the VPs are con-

tinuously consolidated onto the home node and then moved off the home 

node to balance processor utilization.  In the case of the 2VMx8VP versus the 

3VMx6VP scenarios in Figure 2, there is a fivefold increase in the number of 

VP migrations per second.  The high number of VP migrations also impact 

NUMA locality (Section 5.3) as the migrated VP’s memory accesses continual-

ly change from local to remote. Compared to the 2VMx8VP and 4VMx4VP 

scenarios, the 3VMx6VP scenario reported 10% more remote accesses. 

For the 3VMx6VP case, only VM2 is scheduled to be run on processor 1.  

Since VM2 runs undisturbed, it generates the highest relative performance 

(the 0.36 shown in Figure 2). However since VM1 and VM3 are both sched-

uled on processor 0, they compete for resources. The processor itself is over-

subscribed when all VPs of VM3 are migrated to their home node. Hence 

VM1 and VM2 generate relatively lower and similar relative performance 

results (0.23 and 0.24 respectively) causing overall asymmetric results. 

Migrating VPs to their home node is a valid performance optimization for 

small VMs.  However for large VMs that spans multiple processors migrating 

to the home node can cause performance issues.  The hypervisor scheduling 

algorithms should be changed to identify the high VP migration and back off 

on the continual migration of the VPs to their home node. 
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6 Summary 

The TPC-VMS benchmark leverages the TPC-C, TPC-E, TPC-H, and TPC-DS 

benchmarks to provide a measure of database performance in a virtualized 

environment.  TPC-VMS requires 3 identical TPC Benchmarks to be run in a 

virtualized environment, i.e. 3 TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3 

TPC-DS VMs. At first glance TPC-VMS may be considered a simple bench-

mark; however the prototyping effort uncovered a number of performance 

issues. The underlying problem is that virtualization environments have been 

optimized for VMs with small memory footprints and VPs that consume a 

fraction of a processor core.  Database applications require VMs that have a 

large memory footprint, access memory randomly and VPs that consume an 

entire processor core.  
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