
Copyright © 2013 Transaction Processing Performance Council

Virtualization Performance Insights from TPC-VMS

Wayne D. Smith, Shiny Sebastian

Intel Corporation
wayne.smith@intel.com

shiny.sebastian@intel.com

Abstract. This paper describes the TPC-VMS (Virtual Measurement Single Sys-
tem) benchmark that leverages the TPC-C, TPC-E, TPC-H, and TPC-DS bench-
marks to provide a measure of database performance in a virtualized envi-
ronment. TPC-VMS requires 3 identical TPC Benchmarks to be run in separate
virtual machines, i.e. 3 TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3 TPC-DS
VMs. The TPC-VMS performance metric is the minimum value of the three TPC
performance metrics. During the development phase, the workload was pro-
totyped to prove the viability of the benchmark. At first glance TPC-VMS was
considered a simple benchmark; however the prototyping effort uncovered a
number of performance issues intrinsic to virtualization of database applica-
tions.

1 Introduction

Cloud computing delivers virtual processors, memory and storage to a com-

munity of end-users. Key to the cloud is virtualization technology that pro-

vides a separate virtual machine environment for multiple users. A number

of benchmarks currently exist to test virtualization. However there are few

workloads that characterize large database performance in a virtualized envi-

ronment. TPC Benchmarks are the gold standard for large database perfor-

mance. This paper describes the TPC-VMS (Virtual Measurement Single Sys-

tem) benchmark that employs the TPC-C, TPC-E, TPC-H, and TPC-DS bench-

marks to provide a measure of database performance in a virtualized envi-

ronment.

2 Virtualization

Virtualization provides separate virtual machine (VM) environments for mul-

tiple users. Typically each VM includes an operating system and application

code. The VM provides security and isolation from other operating systems

mailto:wayne.smith@intel.com

2

and application code running in their own virtual machines. A hypervisor

provides the virtualization of the underlying hardware by managing the vir-

tual machines.

2.1 Virtualization Benchmarks

There are existing virtualization benchmarks such as SPECvirt_sc2010 [1],

and VMmark[2]. The benchmarks have focused on smaller workloads where

the virtualized environment consumes a fraction of a processor core. Thus

one processor core can support several Virtual Processors (VPs) that execute

the workload inside the VM. At the other extreme are database applications

which may require several processor cores if not several processor sockets.

There is a lack of benchmarks/workloads that characterizes large database

performance in a virtualization environment. The TPC-VMS Benchmark (Vir-

tual Measurement Single System) was created to address this issue.

3 TPC-VMS

The TPC Virtual Measurement Single System Specification [3], TPC-VMS, con-

tains the rules and methodology for measuring and reporting TPC Benchmark

metrics running in a virtualized environment. TPC-VMS leverages the TPC-C,

TPC-E, TPC-H and TPC-DS Benchmarks by adding the methodology and re-

quirements for running and reporting virtualization metrics. TPC-VMS de-

fines four new benchmarks that are neither comparable to each other nor to

the base benchmarks from which they are derived. A TPC-VMS result is a

standalone TPC result. There is no requirement to publish a result of the TPC

Benchmark used as the basis for the TPC-VMS result.

3.1 TPC-VMS Goals

TPC-VMS answers the basic customer question “I have a number of older

databases systems, can I consolidate the database systems onto one new

server”? TPC-VMS specifically addresses the consolidation issue by requiring

multiple database virtual environments to be run on a single server. During

the development of TPC-VMS, the overriding criterion for TPC-VMS was

“time to benchmark” as the need for a database virtualization benchmark

3

was deemed to be critical by the TPC members. Thus there was a conscious

decision to keep the benchmark simple.

3.2 TPC-VMS Run Rules

The TPC-VMS Specification leverages the existing TPC Benchmarks by using

the existing workloads specified by the TPC-C, TPC-E, TPC-H, and TPC-DS

Specifications. Unless otherwise stated in the TPC-VMS Specification, the

test sponsor must follow all requirements of the base TPC Benchmark Speci-

fication. TPC-VMS requires 3 identical TPC Benchmarks to be run in a virtual-

ized environment, i.e. 3 TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3 TPC-DS

VMs. A mixture of different TPC Benchmarks may be a more interesting

workload, but was deemed too complex as the fundamental problem of

“what is the metric” could not be resolved in a timely manner. The number

of VMs was chosen to be 3 as the minimum number of VMs to prove the

point but small enough to reduce the complex task of performing a full TPC

audit for each VM. The TPC-VMS Specification includes a number of “ease of

benchmarking” rules that can potentially reduce the work involved, but a full

TPC audit is a non-trivial amount of work.

3.3 TPC-VMS VSUT

A TPC Benchmark typically defines a SUT or System Under Test, i.e. the

hardware and software that is to be tested. For TPC-VMS the VSUT or VMS

System Under Test is defined as a superset of the base TPC Benchmark SUT.

The VSUT includes a Consolidated Database Server that supports the virtual-

ization environment where the three VMs are run. To prevent a test sponsor

from taking advantage of the limited number of VMs, the Consolidated Da-

tabase Server is required to support a large number of VMs. Thus all I/O

must be virtualized by either the hypervisor or via the I/O controllers manag-

ing the I/O devices. Without this requirement a test sponsor could simply

partition the I/O by assigning an I/O device exclusively to each VM.

4

3.4 TPC-VMS Metric

The TPC-VMS performance metric is the minimum value of the three perfor-

mance metrics for the three TPC Benchmarks run on the VSUT. The TPC-VMS

performance metric is reported by prefixing a “VMS” to the TPC Benchmark

performance metric, e.g. VMStpmC, VMStpsE, VMSQphDS@ScaleFactor or

VMSQphH@ScaleFactor. The minimum of the three VMs was chosen as a

simple means to ensure that all 3 VMs are using an equal amount of VSUT

resources, i.e. the test sponsor is not gaming the results by running an

asymmetric VM that ensures a higher result. The test sponsor must aim to

maximize the minimum result of the 3 VMs. In order to do this the test

sponsor must try to ensure that each VM uses an equal amount of VSUT re-

sources. A secondary reason was to ensure that a TPC-VMS result would not

be comparable to an underlying TPC Benchmark result, e.g. a TPC-VMS TPC-C

VMStpmC result is not comparable to a TPC-C tpmC result.

4 TPC-VMS Prototype Effort

As part of the TPC development process, prototype data is generated to en-

sure the viability of a benchmark. The prototype results are presented to the

TPC Development Subcommittee for review. The data is scrubbed of any

product specific information as TPC membership is a consortium of compa-

nies that are competitors. Described here is the prototype work implement-

ed by Intel. The prototyping effort included both the TPC-E and TPC-H

benchmarks. The test configurations were similar as were the findings re-

garding database performance in a virtualized environment. For simplicity,

only the TPC-E prototyping effort is described in this paper.

At first glance the TPC-VMS benchmark appeared to be just a simple run of 3

TPC benchmarks in a virtualized environment. However the prototyping ef-

fort uncovered a number of performance issues intrinsic to virtualization of

large databases applications. The performance knowledge gained was con-

sidered an excellent ROI for Intel’s investment in the TPC-VMS benchmark

development.

5

4.1 Prototype Test Configuration

The prototype setup is shown in Figure 1. At the left are the client systems

that drive the TPC-E benchmark. The VMS System Under Test (VSUT) in the

center is the server that implements the virtual environment and at the right

are the storage subsystems.

Figure 1 Prototype Setup

The VSUT server is a 2-socket 4-core Intel® Xeon X5570® (Nehalem) system.

The Intel Simultaneous Multithreading feature was enabled on the server. In

order to collect consistent performance data the Intel Turbo Boost Technol-

ogy was disabled for all the runs described in this paper. The VSUT contained

64 gigabytes of memory. A hypervisor or in the parlance of TPC-VMS the Vir-

tual Machine Management Software (VMMS) was used to divide the VSUT

resources into multiple virtual machines (VMs), each hosting a database (DB)

server. The Intel 82574 Ethernet controller in the VSUT server acts as the

virtual network switch to the virtual network interface cards (VNIC) config-

ured for each of the VMs. A RS2PI008 Intel RAID controller attaches four

Newisys storage bays containing the storage devices.

The thee client machines are Intel Xeon X5570 systems, each of which run a

benchmark driver (Bench), a Market Exchange Emulator (MEE) and a Cus-

6

tomer Emulator(CE). The server and the clients are connected to each other

through a 1GB network switch.

4.2 Prototype Data

As part of the prototype effort, we ran five scenarios as can be seen in Figure

2. In the first scenario one database server ran on the native system. In the

second scenario one VM was configured that spanned all physical memory

and virtual processors (1VMx16VP). Similarly the third, fourth and fifth sce-

narios have 2 VMs with 8 Virtual Processors each (2VMx8VP), 3 VMS with 6

Virtual Processors each (3VM*x6VP) and 4 VMs with 4 Virtual Processors

(4VMx4VP). The VMs in each scenario are allotted an equal share of the

memory, virtual processor resources and persistent storage. From the TPC-

VMS benchmark perspective, only the 3VM case is of interest. In this section

we discuss all the scenarios to develop a better understanding of the bench-

mark. Note that all the results considered here are in-spec as per the TPC-E

Specification.

Figure 2 Relative VM vs. Native Performance

The data values in Figure 2 indicate the relative throughput results (TPC-E

transactions per second or tpsE) of the benchmark on each VM in compari-

son to Native result. The first scenario, with the database running on the

Native system, gave the highest performance result, denoted by the 1.00

value. For the second scenario (one VM, 16 virtual processors and all re-

maining memory), throughput dropped by 16% when compared to the Na-

7

tive throughput (1 – 0.84). The reasons for the performance degradation are

discussed in Section 5.

As for the remaining cases, the 2VMx8VP scenario showed the best result of

all runs in a virtualized environment. Note that for scenarios with an even

number of VMs running on this 2-socket system (i.e., 2VMx8VPs and

4VMx4VPs scenario) throughput reported by each VM is almost identical to

the other VMs in the system. However in the case of an odd number of VMs,

(3VMx6VP scenario), we notice a high variation of throughput reported by

each of the VMs. The second VM reported the highest relative throughput of

the 3 VMs (0.36 of the Native), with the 1st and 3rd VMs reporting almost

similar relative performance, 0.23 and 0.24 respectively. As described in 3.4,

the TPC-VMS benchmark requires the test sponsor to report the lowest

throughput of the 3 VMs, 0.23 in this case. As noted in Figure 2, we conduct-

ed the 3 VM experiments with both over subscription - 6/6/6 VPs over 16

logical processors and equal subscription - 6/5/5/ VPs over 16 logical proces-

sors. Similar results were obtained in both the cases. The reasons for the

asymmetrical performance are discussed in Section 5.

5 Performance Issues

The majority of the virtualization benchmarks existing in the industry run

VMs with a small memory footprint and virtual processors that only utilize a

fraction of a single processor core. The performance penalty of the virtualiza-

tion layer was generally observed to be 3-4%. However for large database

applications, the memory footprint is larger, memory accesses are more ran-

domized and the virtual processors consume all of the compute resources of

a processor core. TPC-VMS uncovered a few performance issues for large

database applications running in a virtualized environment.

5.1 Memory Address Translation Overhead

In a virtualized environment, the hypervisor is the control system that runs

on the host and abstracts the system’s physical resources (processor,

memory and I/O) to the guest operating systems running in the virtual ma-

chines while retaining full control of the platform. Each guest OS thinks it is

8

running on its own individual machine. Virtualization of the memory is slight-

ly more complicated than in a native environment. The hypervisor must han-

dle three address spaces:

 Host physical address (HPA): Physical address space of the physical

system managed by the hypervisor

 Guest physical address (GPA): The physical address space of the

guest OS in the VM

 Guest linear address (GLA): The virtual address space of the applica-

tions running under the control of the guest OS

The hypervisor manages two levels of address translation. First is the transla-

tion from GLA space to GPA space. And second is the translation from GPA

space to HPA space. To accelerate the address translation, hypervisors im-

plement in software shadow page tables that combine the two levels of ad-

dress translation. When a guest OS modifies a TLB that specifies the GLA to

GPA translation, the hypervisor must substitute the shadow page HPA into

the TLB thus ensuring the GLA to HPA translation. The shadow page table

HPA substitution occurs on a page fault. Having the hypervisor code handle

each and every page fault can be a major performance issue for applications

that randomly access large amounts of memory.

With the Intel VT-x/i technology [4], the above mentioned memory transla-

tion overhead is significantly reduced using hardware assisted memory man-

agement Extended Page Tables (EPT). When EPT is in use, memory addresses

that would normally be treated as HPA without virtualization are now treat-

ed as GPA addresses. These GPA addresses are translated to HPA addresses

in turn by traversing a set of EPT paging structures as shown in Figure 3 [5].

9

Figure 3 EPT page table walk

EPT is optionally activated on VM entry and deactivated on VM exit. The ad-

vantages of EPT are multifold. EPT handles memory management for VMs

and hence avoids the need for the hypervisor to sync the shadow page ta-

bles. Previously shadow page tables had to be maintained for each guest

process for every guest. Now only one EPT is required per VM. Hence the

benefit of EPT scales as the number of VMs increases. However multiple EPT

tables are traversed during each address translation, thus overhead due to a

TLB miss is increased. Also, the increase in the paging structures will cause

an incrementing stress to the caching system, i.e. additional cache misses.

For the Intel Xeon X5570 processor the EPT translation increases TLB miss

latency by 1.9X. In the Native scenario we observed 3.6 TLB (both instruction

and data) misses per 1,000 instructions executed. In the 1VMx16VP scenario

we observed 4.2 TLB misses per 1,000 instructions executed. Not only is the

TLB miss latency longer due to the EPT translation, but the overall TLB miss

rate increases due to the additional pressure on the cache caused by the EPT

paging structures, hypervisor code and hypervisor data. This in turn causes

additional instruction and data cache misses for the overall application.

10

5.2 Database Memory Allocation

When we analyzed TPC-E performance in 1, 2, 3 and 4 VM environments, we

observed that as VMs were added the total free memory increased. As VMs

are added the amount of memory available to each VM should be the total

memory minus any hypervisor memory divided by the number of VMs. In

each VM, memory is consumed by the OS, any background applications and

the database. The database was configured to pre-allocate all available

memory using 2 megabyte large pages in order to minimize memory address

translation overhead (Section 5.1). The database memory was pre-allocated

to reserve a small amount of memory for the guest OS to allocate to any new

applications. We observed that as VMs were added, the sum of all of the

free memory in the VMs was increasing with the number of VMs. For in-

stance, for 3 VMS nearly 10 gigabytes cumulative memory was left unused in

the system that contained 64 gigabytes of memory.

An in-house tool was used successfully in all VM scenarios to acquire almost

all the VM’s memory. Thus the virtualization environment was ruled out as

cause of the ever increasing free memory. The issue was eventually traced

to a problem with the database memory allocation algorithm. The database

software allocation algorithm in each VM was leaving memory free culminat-

ing in an ever increasing total amount of free memory as the number of VMs

increased. The issue was overlooked in the Native scenario but easily identi-

fied in the virtualization scenarios. The issue has been reported to the data-

base software vendor.

5.3 NUMA Memory Latency

In a multi socket system, memory is distributed among processors such that

latency of a memory access is determined by the memory location relative to

a processor. Memory local to a processor is accessed faster by the processor

than memory local to another processor also called remote memory and

hence the term Non Uniform Memory Access (NUMA). For Nehalem proces-

sors latency due to a remote memory access is roughly 1.7 times the latency

for a local memory access.

11

The percentage of local memory accesses versus all memory access is de-

fined as the NUMA locality for an application. For the Native result in Figure

2 the NUMA locality is 80%, indicating that on average 80% of the processor

memory accesses were local. Each processor is accessing its local memory

80% of the time while 20% of the memory accesses are remote. For the 1

VM result in Figure 2, the NUMA locality is 48.5%, indicating that 51.5% of

the memory accesses are remote. Thus the memory access in the

1VMx16VP case will on average be significantly slower than in the Native

case.

For the Native case, the high percentage of NUMA locality is due to man-

years of effort to optimize the database software for NUMA, i.e. ensure the

software is NUMA aware. The same effort must now be applied to the hy-

pervisor and VMs to ensure that they are NUMA aware in regards to the

placement of virtual processors and virtual memory. For small VMs that do

not span multiple processors the issue is easily resolved. However, latency

due to poor NUMA locality is more conspicuous in cases where a VM spans

multiple sockets. The VM must be NUMA aware to ensure a Virtual Proces-

sor’s memory is allocated locally to the processor executing the VP. The hy-

pervisor must now consider NUMA as a factor to the VP scheduling policy

such that a VP is not migrated from a processor that has high NUMA locality

to a remote processor that will have poor NUMA locality.

5.4 Asymmetrical 3 VM Results

The experimental setup described in this paper contains 2 nodes (i.e., pro-

cessor sockets) with 4 cores each. Intel Hyper Threading technology feature

was turned on and hence we had 16 logical processors (LP) in total. For the

3VMx6VP scenario in Figure 2, each VM is assigned 6 virtual processors.

When the first VM is started, it is scheduled to be run on the first processor

acquiring 6 out of 8 LPs on the processor. Processor 0 is now the home node

of the first VM. When the second VM is started, it is scheduled to be run on

processor 1 acquiring 6 LPs on the processor. Now that we have only 4 LPs

left unallocated in the system, starting a third VM with 6 VPs can cause re-

source contention issues. The third VM is scheduled by the hypervisor to be

run on the processor 0 following a round robin policy. Since processor 0 is

12

the home node for both VM1 and VM3 and only VM2 runs on processor 1,

processor 0 is oversubscribed and processor 1 is undersubscribed. Conten-

tion for processor 0 cycles will cause the hypervisor to migrate VPs of VM1

and VM3 to processor 1.

A problem arises due to the hypervisor optimization to move all VPs to their

home node or processor. For small VMs where the VPs consume a fraction of

a processor core, this optimization is valid to ensure the highest performance

as the VPs will benefit from shared cache and local memory accesses. For

large VMs that span multiple processors the optimization to move all VPs to

their home node introduces a performance degradation as the VPs are con-

tinuously consolidated onto the home node and then moved off the home

node to balance processor utilization. In the case of the 2VMx8VP versus the

3VMx6VP scenarios in Figure 2, there is a fivefold increase in the number of

VP migrations per second. The high number of VP migrations also impact

NUMA locality (Section 5.3) as the migrated VP’s memory accesses continual-

ly change from local to remote. Compared to the 2VMx8VP and 4VMx4VP

scenarios, the 3VMx6VP scenario reported 10% more remote accesses.

For the 3VMx6VP case, only VM2 is scheduled to be run on processor 1.

Since VM2 runs undisturbed, it generates the highest relative performance

(the 0.36 shown in Figure 2). However since VM1 and VM3 are both sched-

uled on processor 0, they compete for resources. The processor itself is over-

subscribed when all VPs of VM3 are migrated to their home node. Hence

VM1 and VM2 generate relatively lower and similar relative performance

results (0.23 and 0.24 respectively) causing overall asymmetric results.

Migrating VPs to their home node is a valid performance optimization for

small VMs. However for large VMs that spans multiple processors migrating

to the home node can cause performance issues. The hypervisor scheduling

algorithms should be changed to identify the high VP migration and back off

on the continual migration of the VPs to their home node.

13

6 Summary

The TPC-VMS benchmark leverages the TPC-C, TPC-E, TPC-H, and TPC-DS

benchmarks to provide a measure of database performance in a virtualized

environment. TPC-VMS requires 3 identical TPC Benchmarks to be run in a

virtualized environment, i.e. 3 TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3

TPC-DS VMs. At first glance TPC-VMS may be considered a simple bench-

mark; however the prototyping effort uncovered a number of performance

issues. The underlying problem is that virtualization environments have been

optimized for VMs with small memory footprints and VPs that consume a

fraction of a processor core. Database applications require VMs that have a

large memory footprint, access memory randomly and VPs that consume an

entire processor core.

Acknowledgements

The TPC-VMS benchmark is a collaborative of many individuals from several

leading companies in the computer industry. The material presented here is

the result of the work of the committee members as a whole rather than two

authors. We would like to acknowledge the contributions of Dave Raddatz,

John Fowler, Karl Huppler, Jamie Reding, Rick Freeman, Andy Bond, Reza

Taheri, Charles Levine and Vish Viswanathan.

References

1. SPEC Virtualization Committee, http://www.spec.org/virt_sc2010
2. VMware Inc., VMmark: A Scalable Benchmark for Virtualized Systems,

http://www.vmware.com/pdf/vmmark_intro.pdf
3. TPC-VMS Specification, http://www.tpc.org/tpcvms/spec/tpc-vms-v1_1_0.pdf
4. Intel Software Development Manual 2013,

http://download.intel.com/products/processor/manual/325462.pdf
5. Enabling Intel Virtualization Technology Features and Benefits,

http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-
paper.pdf

http://www.spec.org/virt_sc2010
http://www.vmware.com/pdf/vmmark_intro.pdf
http://www.tpc.org/tpcvms/spec/tpc-vms-v1_1_0.pdf
http://download.intel.com/products/processor/manual/325462.pdf

